Primitive quadratics reflected in -sequences.
Lindström, B. (1999)
Portugaliae Mathematica
Similarity:
Lindström, B. (1999)
Portugaliae Mathematica
Similarity:
Alain Togbé, Bo He (2008)
Acta Arithmetica
Similarity:
Fabien Durand (2002)
Acta Arithmetica
Similarity:
Florian Luca, P. G. Walsh (2004)
Colloquium Mathematicae
Similarity:
We show that there exist infinitely many positive integers r not of the form (p-1)/2 - ϕ(p-1), thus providing an affirmative answer to a question of Neville Robbins.
Walter Carlip, Lawrence Somer (2007)
Colloquium Mathematicae
Similarity:
Let d be a fixed positive integer. A Lucas d-pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U(P,Q) such that the rank of appearance of N in U(P,Q) is exactly (N-ε(N))/d, where the signature ε(N) = (D/N) is given by the Jacobi symbol with respect to the discriminant D of U. A Lucas d-pseudoprime N is a primitive Lucas d-pseudoprime if (N-ε(N))/d is the maximal rank of N among Lucas sequences U(P,Q) that exhibit N as a Lucas pseudoprime. ...
T. W. Müller, J.-C. Schlage-Puchta (2004)
Acta Arithmetica
Similarity:
Robert Juricevic (2009)
Acta Arithmetica
Similarity:
Kui Liu (2010)
Acta Arithmetica
Similarity:
Bertrand Arnaud (1988)
Manuscripta mathematica
Similarity:
A. Schinzel (2011)
Acta Arithmetica
Similarity:
Yonghui Wang, Claus Bauer (2004)
Acta Arithmetica
Similarity:
Gordon Pall (1973)
Acta Arithmetica
Similarity:
Andrew Granville (2012)
Acta Arithmetica
Similarity:
Pablo Sáez, Xavier Vidaux (2011)
Acta Arithmetica
Similarity:
G.A. Margulis, S.G. Dani (1989)
Inventiones mathematicae
Similarity:
Stephen D. Cohen, Sophie Huczynska (2010)
Acta Arithmetica
Similarity:
Stephen D. Cohen, Sophie Huczynska (2003)
Acta Arithmetica
Similarity:
Wenguang Zhai (2002)
Acta Arithmetica
Similarity:
L. Carlitz (1972)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: