A finiteness theorem for imaginary abelian number fields.
Stéphane Louboutin (1996)
Manuscripta mathematica
Similarity:
Stéphane Louboutin (1996)
Manuscripta mathematica
Similarity:
Stéphane R. Louboutin (2006)
Acta Arithmetica
Similarity:
Henri Johnston (2006)
Acta Arithmetica
Similarity:
Ku-Young Chang, Soun-Hi Kwon (2000)
Journal de théorie des nombres de Bordeaux
Similarity:
We know that there exist only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Such non-quadratic cyclic number fields are completely determined in [Lou2,4] and [CK]. In this paper we determine all non-cyclic abelian number fields with class numbers equal to their genus class numbers, thus the one class in each genus problem is solved, except for the imaginary quadratic number fields.
Stanislav Jakubec (2010)
Acta Arithmetica
Similarity:
Louboutin, Stéphane (1998)
Experimental Mathematics
Similarity:
Radan Kučera (2002)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
Tauno Metsänkylä (1983)
Mathematische Annalen
Similarity:
Mikihito Hirabayashi, Ken-ichi Yoshino (1989)
Manuscripta mathematica
Similarity:
Manabu Ozaki, Hisao Taya (1995)
Manuscripta mathematica
Similarity:
Yasushi Mizusawa (2005)
Acta Arithmetica
Similarity:
Ku-Young Chang, Soun-Hi Kwon (2002)
Acta Arithmetica
Similarity:
Young-Ho Park (2002)
Acta Arithmetica
Similarity:
Ichiro Miyada (1995)
Manuscripta mathematica
Similarity:
Daniel J. Madden, William Yslas Velez (1979/80)
Manuscripta mathematica
Similarity: