Pair correlation of the zeros of the Riemann zeta function in longer ranges
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
Shaoji Feng (2005)
Acta Arithmetica
Similarity:
Laurinčikas, Antanas, Steuding, Jörn (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Norman Levinson (1972)
Acta Arithmetica
Similarity:
A. Laurinčikas (1990)
Acta Arithmetica
Similarity:
Habiba Kadiri (2013)
Acta Arithmetica
Similarity:
We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.
Ramachandra, K., Sankaranarayanan, A. (1991)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Almkvist, Gert, Granville, Andrew (1999)
Experimental Mathematics
Similarity:
Aleksandar Ivić (1989)
Publications de l'Institut Mathématique
Similarity:
Aleksandar Ivić (1995)
Publications de l'Institut Mathématique
Similarity:
Hugh L. Montgomery, John G. Thompson (2012)
Acta Arithmetica
Similarity:
Justas Kalpokas, Paulius Šarka (2015)
Acta Arithmetica
Similarity:
We investigate real values of the Riemann zeta function on the critical line. We show that if Gram's points do not intersect with the ordinates of the nontrivial zeros of the Riemann zeta function then the Riemann zeta function takes arbitrarily small real values on the critical line.
H. M. Bui (2014)
Acta Arithmetica
Similarity:
Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.