A reciprocity theorem and a three-term relation for generalized Dedekind-Rademacher sums
L. Carlitz (1980)
Acta Arithmetica
Similarity:
L. Carlitz (1980)
Acta Arithmetica
Similarity:
Emmanuel Tsukerman (2015)
Acta Arithmetica
Similarity:
Using a generalization due to Lerch [Bull. Int. Acad. François Joseph 3 (1896)] of a classical lemma of Zolotarev, employed in Zolotarev's proof of the law of quadratic reciprocity, we determine necessary and sufficient conditions for the difference of two Dedekind sums to be in 8ℤ. These yield new necessary conditions for equality of two Dedekind sums. In addition, we resolve a conjecture of Girstmair [arXiv:1501.00655].
Abdelmejid Bayad, Abdelaziz Raouj (2010)
Acta Arithmetica
Similarity:
Wenpeng Zhang (2003)
Acta Arithmetica
Similarity:
Zhefeng Xu, Wenpeng Zhang (2008)
Acta Arithmetica
Similarity:
Zhi-Wei Sun (2001)
Acta Arithmetica
Similarity:
Tingting Wang (2012)
Acta Arithmetica
Similarity:
L. Carlitz (1964)
Mathematische Zeitschrift
Similarity:
Vsevolod F. Lev (2008)
Acta Arithmetica
Similarity:
Sun, Zhiwei (2003)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
L. Carlitz (1976)
Acta Arithmetica
Similarity:
Matthias Beck, Anastasia Chavez (2011)
Acta Arithmetica
Similarity:
Kazuhito Kozuka (2011)
Acta Arithmetica
Similarity:
Alfred Moessner, George Xeroudakes (1954)
Publications de l'Institut Mathématique
Similarity: