Additive bases with many representations
Paul Erdös, Melvyn Nathanson (1989)
Acta Arithmetica
Similarity:
Paul Erdös, Melvyn Nathanson (1989)
Acta Arithmetica
Similarity:
C. Sinan Güntürk, Melvyn B. Nathanson (2006)
Acta Arithmetica
Similarity:
G. Horváth (2007)
Acta Arithmetica
Similarity:
Melvyn B. Nathanson (2003)
Acta Arithmetica
Similarity:
Aleksandar Krapež, M.A. Taylor (1985)
Publications de l'Institut Mathématique
Similarity:
Pushkin, L. (2002)
Lobachevskii Journal of Mathematics
Similarity:
Paul Balister, Jeffrey Paul Wheeler (2009)
Acta Arithmetica
Similarity:
Georges Grekos (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
W. Grabowski, W. Szwarc (1966)
Applicationes Mathematicae
Similarity:
Christoph Schmitt (2006)
Acta Arithmetica
Similarity:
Ondrej F. K. Kalenda (2002)
Colloquium Mathematicae
Similarity:
We prove, among other things, that the space C[0,ω₂] has no countably norming Markushevich basis. This answers a question asked by G. Alexandrov and A. Plichko.
Giampiero Chiaselotti (2002)
Acta Arithmetica
Similarity:
Ioannis Konstantoulas (2013)
Acta Arithmetica
Similarity:
We study representation functions of asymptotic additive bases and more general subsets of ℕ (sets with few nonrepresentable numbers). We prove that if ℕ∖(A+A) has sufficiently small upper density (as in the case of asymptotic bases) then there are infinitely many numbers with more than five representations in A+A, counting order.