A Note on the Normality of Unramified, Abelian Extensions of Quadratic Extensions.
Daniel J. Madden, William Yslas Velez (1979/80)
Manuscripta mathematica
Similarity:
Daniel J. Madden, William Yslas Velez (1979/80)
Manuscripta mathematica
Similarity:
Keiji Okano (2006)
Acta Arithmetica
Similarity:
Roblot, Xavier-François (2000)
Experimental Mathematics
Similarity:
Duke, W., Greenfield, Stephen J., Speer, Eugene R. (1998)
Journal of Integer Sequences [electronic only]
Similarity:
Qin Yue (2011)
Acta Arithmetica
Similarity:
Stanislav Jakubec (2010)
Acta Arithmetica
Similarity:
Patrik Lundström (2001)
Acta Arithmetica
Similarity:
Sudesh K. Gogia, S. Luthar (1978)
Journal für die reine und angewandte Mathematik
Similarity:
Gopal Prasad (1986)
Mathematische Annalen
Similarity:
Yasushi Mizusawa (2005)
Acta Arithmetica
Similarity:
Heima Hayashi (2011)
Acta Arithmetica
Similarity:
Ágota Figula, Péter T. Nagy (2020)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Our paper deals with the investigation of extensions of commutative groups by loops so that the quasigroups that result in the multiplication between cosets of the kernel subgroup are T-quasigroups. We limit our study to extensions in which the quasigroups determining the multiplication are linear functions without constant term, called linear abelian extensions. We characterize constructively such extensions with left-, right-, or inverse properties using a general construction according...
Kuniaki Horie, Mitsuko Horie (2008)
Acta Arithmetica
Similarity:
Benayed, Miloud (1998)
Journal of Lie Theory
Similarity:
Zsolt Páles, Vera Zeidan (1996)
Aequationes mathematicae
Similarity:
Stéphane Louboutin (1996)
Manuscripta mathematica
Similarity:
Alexander R. Pruss (2014)
Colloquium Mathematicae
Similarity:
Let G be an abelian group acting on a set X, and suppose that no element of G has any finite orbit of size greater than one. We show that every partial order on X invariant under G extends to a linear order on X also invariant under G. We then discuss extensions to linear preorders when the orbit condition is not met, and show that for any abelian group acting on a set X, there is a linear preorder ≤ on the powerset 𝓟X invariant under G and such that if A is a proper subset of B, then...