On the zeros of Dirichlet L-functions. IV.
Akio Fujii (1976)
Journal für die reine und angewandte Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Akio Fujii (1976)
Journal für die reine und angewandte Mathematik
Similarity:
James Lee Hafner (1983)
Mathematische Annalen
Similarity:
J.B. Conrey, A. Ghosh (1988)
Inventiones mathematicae
Similarity:
H.S. Shapiro, A.L. Shields (1962/63)
Mathematische Zeitschrift
Similarity:
J. Kaczorowski (1991)
Acta Arithmetica
Similarity:
H. J. Bremermann (1967)
Colloquium Mathematicae
Similarity:
J. Kaczorowski (1991)
Acta Arithmetica
Similarity:
K. Ramachandra, A. Sankaranarayanan (1994)
Mathematica Scandinavica
Similarity:
Enrico Bombieri, Alberto Perelli (2001)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
Under certain mild analytic assumptions one obtains a lower bound, essentially of order , for the number of zeros and poles of a Dirichlet series in a disk of radius . A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.
Yasutaka Ihara, V. Kumar Murty, Mahoro Shimura (2009)
Acta Arithmetica
Similarity:
J. B. Conrey, H. Iwaniec, K. Soundararajan (2012)
Acta Arithmetica
Similarity:
Yuk-Kam Lau (2001)
Acta Arithmetica
Similarity:
Kovacheva, Ralitza K. (2008)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 30B40, 30B10, 30C15, 31A15. We are concerned with overconvergent power series. The main idea is to relate the distribution of the zeros of subsequences of partial sums and the phenomenon of overconvergence. Sufficient conditions for a power series to be overconvergent in terms of the distribution of the zeros of a subsequence are provided, and results of Jentzsch-Szegö type about the asymptotic distribution of the zeros of overconvergent...
Stéphane R. Louboutin (2003)
Colloquium Mathematicae
Similarity:
We prove that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ 1- log2, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0.
Lennart Carleson (1952)
Mathematische Zeitschrift
Similarity: