On the zeros of Dirichlet L-functions. IV.
Akio Fujii (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Akio Fujii (1976)
Journal für die reine und angewandte Mathematik
Similarity:
James Lee Hafner (1983)
Mathematische Annalen
Similarity:
J.B. Conrey, A. Ghosh (1988)
Inventiones mathematicae
Similarity:
H.S. Shapiro, A.L. Shields (1962/63)
Mathematische Zeitschrift
Similarity:
J. Kaczorowski (1991)
Acta Arithmetica
Similarity:
H. J. Bremermann (1967)
Colloquium Mathematicae
Similarity:
J. Kaczorowski (1991)
Acta Arithmetica
Similarity:
K. Ramachandra, A. Sankaranarayanan (1994)
Mathematica Scandinavica
Similarity:
Enrico Bombieri, Alberto Perelli (2001)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
Under certain mild analytic assumptions one obtains a lower bound, essentially of order , for the number of zeros and poles of a Dirichlet series in a disk of radius . A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.
Yasutaka Ihara, V. Kumar Murty, Mahoro Shimura (2009)
Acta Arithmetica
Similarity:
J. B. Conrey, H. Iwaniec, K. Soundararajan (2012)
Acta Arithmetica
Similarity:
Yuk-Kam Lau (2001)
Acta Arithmetica
Similarity:
Kovacheva, Ralitza K. (2008)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 30B40, 30B10, 30C15, 31A15. We are concerned with overconvergent power series. The main idea is to relate the distribution of the zeros of subsequences of partial sums and the phenomenon of overconvergence. Sufficient conditions for a power series to be overconvergent in terms of the distribution of the zeros of a subsequence are provided, and results of Jentzsch-Szegö type about the asymptotic distribution of the zeros of overconvergent...
Stéphane R. Louboutin (2003)
Colloquium Mathematicae
Similarity:
We prove that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ 1- log2, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0.
Lennart Carleson (1952)
Mathematische Zeitschrift
Similarity: