A theorem of Mahler and some applications to transference theorems
I. S. Luthar, M. Vinyard (1977)
Colloquium Mathematicae
Similarity:
I. S. Luthar, M. Vinyard (1977)
Colloquium Mathematicae
Similarity:
Daniel Duverney, Kumiko Nishioka (2003)
Acta Arithmetica
Similarity:
John Garza (2007)
Acta Arithmetica
Similarity:
Georges Rhin (2004)
Colloquium Mathematicae
Similarity:
We give lower bounds for the Mahler measure of totally positive algebraic integers. These bounds depend on the degree and the discriminant. Our results improve earlier ones due to A. Schinzel. The proof uses an explicit auxiliary function in two variables.
Ulrich Rausch (1985)
Colloquium Mathematicae
Similarity:
Robert Tijdeman (1974-1975)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Similarity:
Jan-Hendrik Evertse (1997)
Journal für die reine und angewandte Mathematik
Similarity:
Thomas Töpfer (1995)
Compositio Mathematica
Similarity:
J.H. Evertse (1984)
Inventiones mathematicae
Similarity:
N. Tzanakis, B. M. M. de Weger (1993)
Compositio Mathematica
Similarity:
Artūras Dubickas (2004)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The main result of this paper implies that for every positive integer there are at least nonconjugate algebraic numbers which have their Mahler measures lying in the interval . These algebraic numbers are constructed as roots of certain nonreciprocal quadrinomials.