On the diophantine equation f (x, y) = 0.
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
Pingzhi Yuan (2004)
Acta Arithmetica
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Katalin Gyarmati (2001)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
Yu. F. Bilu, M. Kulkarni, B. Sury (2004)
Acta Arithmetica
Similarity:
P. Hubert, A. Messaoudi (2006)
Acta Arithmetica
Similarity:
P. Erdös, P. Szüsz, P. Turán (1958)
Colloquium Mathematicae
Similarity:
E. Herrmann, I. Járási, A. Pethő (2004)
Acta Arithmetica
Similarity:
Xiaolei Dong, W. C. Shiu, C. I. Chu, Zhenfu Cao (2007)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Andrej Dujella, Alan Filipin, Clemens Fuchs (2007)
Acta Arithmetica
Similarity: