On Hilbert-Speiser type imaginary quadratic fields
Humio Ichimura, Hiroki Sumida-Takahashi (2009)
Acta Arithmetica
Similarity:
Humio Ichimura, Hiroki Sumida-Takahashi (2009)
Acta Arithmetica
Similarity:
A. Mouhib (2010)
Acta Arithmetica
Similarity:
Kazimierz Szymiczek (1981)
Journal für die reine und angewandte Mathematik
Similarity:
Zeng Guangxin (1991)
Mathematische Zeitschrift
Similarity:
Qin Yue (2001)
Acta Arithmetica
Similarity:
Humio Ichimura, Hiroki Sumida-Takahashi (2007)
Acta Arithmetica
Similarity:
Yutaka Sueyoshi (2004)
Acta Arithmetica
Similarity:
Cornelius Greither, Henri Johnston (2009)
Acta Arithmetica
Similarity:
Guessous, Mohamed (1997)
Journal of Convex Analysis
Similarity:
Alfred Czogała (2001)
Mathematica Slovaca
Similarity:
Abdelmalek Azizi, Ali Mouhib (2013)
Czechoslovak Mathematical Journal
Similarity:
It is well known by results of Golod and Shafarevich that the Hilbert -class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian -extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian -extension over in which...