Displaying similar documents to “Sums of distances to the nearest integer and the discrepancy of digital nets”

A generalization of NUT digital (0,1)-sequences and best possible lower bounds for star discrepancy

Henri Faure, Friedrich Pillichshammer (2013)

Acta Arithmetica

Similarity:

In uniform distribution theory, discrepancy is a quantitative measure for the irregularity of distribution of a sequence modulo one. At the moment the concept of digital (t,s)-sequences as introduced by Niederreiter provides the most powerful constructions of s-dimensional sequences with low discrepancy. In one dimension, recently Faure proved exact formulas for different notions of discrepancy for the subclass of NUT digital (0,1)-sequences. It is the aim of this paper to generalize...