Improved upper bounds for the star discrepancy of digital nets in dimension 3
Friedrich Pillichshammer (2003)
Acta Arithmetica
Similarity:
Friedrich Pillichshammer (2003)
Acta Arithmetica
Similarity:
Harald Niederreiter, Chaoping Xing (2002)
Acta Arithmetica
Similarity:
Roswitha Hofer, Gerhard Larcher (2010)
Acta Arithmetica
Similarity:
Josef Dick, Friedrich Pillichshammer (2014)
Acta Arithmetica
Similarity:
Sun, Zhiwei (2003)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
Zhi-Wei Sun (2001)
Acta Arithmetica
Similarity:
Henri Faure, Friedrich Pillichshammer (2013)
Acta Arithmetica
Similarity:
In uniform distribution theory, discrepancy is a quantitative measure for the irregularity of distribution of a sequence modulo one. At the moment the concept of digital (t,s)-sequences as introduced by Niederreiter provides the most powerful constructions of s-dimensional sequences with low discrepancy. In one dimension, recently Faure proved exact formulas for different notions of discrepancy for the subclass of NUT digital (0,1)-sequences. It is the aim of this paper to generalize...
Z. Cylkowski (1966)
Applicationes Mathematicae
Similarity:
Alfred Moessner, George Xeroudakes (1954)
Publications de l'Institut Mathématique
Similarity:
Tingting Wang (2012)
Acta Arithmetica
Similarity:
Vsevolod F. Lev (2008)
Acta Arithmetica
Similarity:
Harald Niederreiter, Gottlieb Pirsic (2001)
Acta Arithmetica
Similarity:
Harald Niederreiter, Józef Horbowicz (1988)
Colloquium Mathematicae
Similarity:
Henri Faure (2005)
Acta Arithmetica
Similarity:
Jeffrey Smith, Ergun Akleman, Richard Davison, John Keyser (2005)
Visual Mathematics
Similarity:
Huaning Liu, Wenpeng Zhang (2007)
Acta Arithmetica
Similarity: