Displaying similar documents to “On the concentration of points on modular hyperbolas and exponential curves”

Modular parametrizations of certain elliptic curves

Matija Kazalicki, Koji Tasaka (2014)

Acta Arithmetica

Similarity:

Kaneko and Sakai (2013) recently observed that certain elliptic curves whose associated newforms (by the modularity theorem) are given by the eta-quotients can be characterized by a particular differential equation involving modular forms and Ramanujan-Serre differential operator. In this paper, we study certain properties of the modular parametrization associated to the elliptic curves over ℚ, and as a consequence we generalize and explain some of their findings. ...

Modular equations for some η-products

(2013)

Acta Arithmetica

Similarity:

The classical modular equations involve bivariate polynomials that can be seen to be univariate in the modular invariant j with integer coefficients. Kiepert found modular equations relating some η-quotients and the Weber functions γ₂ and γ₃. In the present work, we extend this idea to double η-quotients and characterize all the parameters leading to this kind of equation. We give some properties of these equations, explain how to compute them and give numerical examples.