A new kind of Diophantine equations
Binzhou Xia, Tianxin Cai (2011)
Acta Arithmetica
Similarity:
Binzhou Xia, Tianxin Cai (2011)
Acta Arithmetica
Similarity:
J. H. E. Cohn (2003)
Acta Arithmetica
Similarity:
Clemens Fuchs, Robert F. Tichy (2003)
Acta Arithmetica
Similarity:
Robert S. Coulter, Marie Henderson, Felix Lazebnik (2006)
Acta Arithmetica
Similarity:
Acu, Dumitru (2001)
General Mathematics
Similarity:
Yu. F. Bilu, M. Kulkarni, B. Sury (2004)
Acta Arithmetica
Similarity:
Mario Huicochea (2010)
Acta Arithmetica
Similarity:
Csaba Rakaczki (2003)
Acta Arithmetica
Similarity:
E. Herrmann, I. Járási, A. Pethő (2004)
Acta Arithmetica
Similarity:
M. A. Bennett, M. Filaseta, O. Trifonov (2008)
Acta Arithmetica
Similarity:
Marcin Acewicz, Karol Pąk (2017)
Formalized Mathematics
Similarity:
In this article we formalize several basic theorems that correspond to Pell’s equation. We focus on two aspects: that the Pell’s equation x2 − Dy2 = 1 has infinitely many solutions in positive integers for a given D not being a perfect square, and that based on the least fundamental solution of the equation when we can simply calculate algebraically each remaining solution. “Solutions to Pell’s Equation” are listed as item #39 from the “Formalizing 100 Theorems” list maintained by Freek...
N. Saradha, T. N. Shorey (2001)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
T. Shorey (1989)
Acta Arithmetica
Similarity:
Pingzhi Yuan (2004)
Acta Arithmetica
Similarity:
Maohua Le (2001)
Acta Arithmetica
Similarity:
N. Saradha (2012)
Acta Arithmetica
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity: