Iwasawa invariants of imaginary quadratic fields.
Shu-Leung Tang (1993)
Manuscripta mathematica
Similarity:
Shu-Leung Tang (1993)
Manuscripta mathematica
Similarity:
K. Horie (1987)
Inventiones mathematicae
Similarity:
Tsuneo Arakawa (1982)
Mathematische Annalen
Similarity:
Dongho Byeon (2005)
Acta Arithmetica
Similarity:
Radan Kučera (2010)
Acta Arithmetica
Similarity:
Kostadinka Lapkova (2012)
Acta Arithmetica
Similarity:
Manabu Ozaki, Hisao Taya (1997)
Manuscripta mathematica
Similarity:
Iwao Kimura (2003)
Acta Arithmetica
Similarity:
Sheng Chen, Hong You (2003)
Acta Arithmetica
Similarity:
R.W. Davis (1976)
Journal für die reine und angewandte Mathematik
Similarity:
W. Narkiewicz (1967)
Colloquium Mathematicae
Similarity:
W. Narkiewicz (1967)
Colloquium Mathematicae
Similarity:
Toru Komatsu (2002)
Acta Arithmetica
Similarity:
Mark Coleman, Andrew Swallow (2005)
Acta Arithmetica
Similarity:
Akiko Ito (2015)
Acta Arithmetica
Similarity:
Let p be an odd prime number. We prove the existence of certain infinite families of imaginary quadratic fields in which p splits and for which the Iwasawa λ-invariant of the cyclotomic ℤₚ-extension is equal to 1.
A.R. Wadsworth, P. Mammone, R. Moresi (1991)
Mathematische Zeitschrift
Similarity:
Zdeněk Polický (2009)
Acta Arithmetica
Similarity: