Quadratic fields with infinite Hilbert 2-class field towers
Frank Gerth III (2003)
Acta Arithmetica
Similarity:
Frank Gerth III (2003)
Acta Arithmetica
Similarity:
H. R. Qin (2004)
Acta Arithmetica
Similarity:
Allison M. Pacelli (2009)
Acta Arithmetica
Similarity:
Qin Yue (2001)
Acta Arithmetica
Similarity:
Qin Yue, Keqin Feng (2000)
Acta Arithmetica
Similarity:
Carl Erickson, Nathan Kaplan, Neil Mendoza, Allison M. Pacelli, Todd Shayler (2007)
Acta Arithmetica
Similarity:
Robert Osburn (2002)
Acta Arithmetica
Similarity:
Humio Ichimura, Hiroki Sumida-Takahashi (2009)
Acta Arithmetica
Similarity:
Dongho Byeon (2008)
Acta Arithmetica
Similarity:
Yutaka Sueyoshi (2004)
Acta Arithmetica
Similarity:
Xuejun Guo, Hourong Qin (2012)
Acta Arithmetica
Similarity:
Xuejun Guo (2009)
Acta Arithmetica
Similarity:
Abdelmalek Azizi, Ali Mouhib (2013)
Czechoslovak Mathematical Journal
Similarity:
It is well known by results of Golod and Shafarevich that the Hilbert -class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian -extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian -extension over in which...
Frank III Gerth (1984)
Inventiones mathematicae
Similarity:
Yoonjin Lee (2006)
Acta Arithmetica
Similarity:
Toru Komatsu (2001)
Acta Arithmetica
Similarity:
Humio Ichimura, Hiroki Sumida-Takahashi (2007)
Acta Arithmetica
Similarity:
W. Narkiewicz (1981)
Colloquium Mathematicae
Similarity: