Displaying similar documents to “Gaps between primes in Beatty sequences”

Primes in tuples IV: Density of small gaps between consecutive primes

Daniel Alan Goldston, János Pintz, Cem Yalçın Yıldırım (2013)

Acta Arithmetica

Similarity:

We prove that given any small but fixed η > 0, a positive proportion of all gaps between consecutive primes are smaller than η times the average gap. We show some unconditional and conditional quantitative results in this vein. In the results the dependence on η is given explicitly, providing a new quantitative way, in addition to that of the first paper in this series, of measuring the effect of the knowledge on the level of distribution of primes.

A higher rank Selberg sieve and applications

Akshaa Vatwani (2018)

Czechoslovak Mathematical Journal

Similarity:

We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.

On pairs of Goldbach-Linnik equations with unequal powers of primes

Enxun Huang (2023)

Czechoslovak Mathematical Journal

Similarity:

It is proved that every pair of sufficiently large odd integers can be represented by a pair of equations, each containing two squares of primes, two cubes of primes, two fourth powers of primes and 105 powers of 2.