Displaying similar documents to “Solving linear systems of equations over integers with Gröbner bases”

M-bases in spaces of continuous functions on ordinals

Ondrej F. K. Kalenda (2002)

Colloquium Mathematicae

Similarity:

We prove, among other things, that the space C[0,ω₂] has no countably norming Markushevich basis. This answers a question asked by G. Alexandrov and A. Plichko.

Aspects of unconditionality of bases in spaces of compact operators

James R. Holub (1998)

Annales Polonici Mathematici

Similarity:

E. Tutaj has introduced classes of Schauder bases termed "unconditional-like" (UL) and "unconditional-like*" (UL*) whose intersection is the class of unconditional bases. In view of this association with unconditional bases, it is interesting to note that there exist Banach spaces which have no unconditional basis and yet have a basis of one of these two types (e.g., the space 𝓞[0,1]). In the same spirit, we show in this paper that the space of all compact operators on a reflexive Banach...

Border bases and kernels of homomorphisms and of derivations

Janusz Zieliński (2010)

Open Mathematics

Similarity:

Border bases are an alternative to Gröbner bases. The former have several more desirable properties. In this paper some constructions and operations on border bases are presented. Namely; the case of a restriction of an ideal to a polynomial ring (in a smaller number of variables), the case of the intersection of two ideals, and the case of the kernel of a homomorphism of polynomial rings. These constructions are applied to the ideal of relations and to factorizable derivations. ...

Towards the automated synthesis of a Gröbner bases algorithm.

Bruno Buchberger (2004)

RACSAM

Similarity:

We discuss the question of whether the central result of algorithmic Gröbner bases theory, namely the notion of S?polynomials together with the algorithm for constructing Gröbner bases using S?polynomials, can be obtained by ?artificial intelligence?, i.e. a systematic (algorithmic) algorithm synthesis method. We present the ?lazy thinking? method for theorem and algorithm invention and apply it to the ?critical pair / completion? algorithm scheme. We present a road map that demonstrates...