Displaying similar documents to “Rational approximations to algebraic Laurent series with coefficients in a finite field”

Transcendence results on the generating functions of the characteristic functions of certain self-generating sets

Peter Bundschuh, Keijo Väänänen (2014)

Acta Arithmetica

Similarity:

This article continues two papers which recently appeared in this same journal. First, Dilcher and Stolarsky [140 (2009)] introduced two new power series, F(z) and G(z), related to the so-called Stern polynomials and having coefficients 0 and 1 only. Shortly later, Adamczewski [142 (2010)] proved, inter alia, that G(α),G(α⁴) are algebraically independent for any algebraic α with 0 < |α| < 1. Our first key result is that F and G have large blocks of consecutive zero coefficients....

Algebraic Numbers

Yasushige Watase (2016)

Formalized Mathematics

Similarity:

This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to...

Transcendence results on the generating functions of the characteristic functions of certain self-generating sets, II

Peter Bundschuh, Keijo Väänänen (2015)

Acta Arithmetica

Similarity:

This article continues a previous paper by the authors. Here and there, the two power series F(z) and G(z), first introduced by Dilcher and Stolarsky and related to the so-called Stern polynomials, are studied analytically and arithmetically. More precisely, it is shown that the function field ℂ(z)(F(z),F(z⁴),G(z),G(z⁴)) has transcendence degree 3 over ℂ(z). This main result contains the algebraic independence over ℂ(z) of G(z) and G(z⁴), as well as that of F(z) and F(z⁴). The first...

Multiplicative dependence of shifted algebraic numbers

Paulius Drungilas, Artūras Dubickas (2003)

Colloquium Mathematicae

Similarity:

We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.

Reduction of semialgebraic constructible functions

Ludwig Bröcker (2005)

Annales Polonici Mathematici

Similarity:

Let R be a real closed field with a real valuation v. A ℤ-valued semialgebraic function on Rⁿ is called algebraic if it can be written as the sign of a symmetric bilinear form over R[X₁,. .., Xₙ]. We show that the reduction of such a function with respect to v is again algebraic on the residue field. This implies a corresponding result for limits of algebraic functions in definable families.