Generalizations of Dedekind sums and their reciprocity laws
Yumiko Nagasaka, Kaori Ota, Chizuru Sekine (2003)
Acta Arithmetica
Similarity:
Yumiko Nagasaka, Kaori Ota, Chizuru Sekine (2003)
Acta Arithmetica
Similarity:
Henri Virtanen (2002)
Acta Arithmetica
Similarity:
Zhefeng Xu, Wenpeng Zhang (2008)
Acta Arithmetica
Similarity:
Li Xiaoxue, Hu Jiayuan (2017)
Open Mathematics
Similarity:
The main purpose of this paper is using the analytic method and the properties of the classical Gauss sums to study the computational problem of one kind fourth hybrid power mean of the quartic Gauss sums and Kloosterman sums, and give an exact computational formula for it.
L. Carlitz (1980)
Acta Arithmetica
Similarity:
Emmanuel Tsukerman (2015)
Acta Arithmetica
Similarity:
Using a generalization due to Lerch [Bull. Int. Acad. François Joseph 3 (1896)] of a classical lemma of Zolotarev, employed in Zolotarev's proof of the law of quadratic reciprocity, we determine necessary and sufficient conditions for the difference of two Dedekind sums to be in 8ℤ. These yield new necessary conditions for equality of two Dedekind sums. In addition, we resolve a conjecture of Girstmair [arXiv:1501.00655].
Huaning Liu, Wenpeng Zhang (2007)
Acta Arithmetica
Similarity:
Vsevolod F. Lev (2008)
Acta Arithmetica
Similarity:
Koichi Kawada, Trevor D. Wooley (2002)
Acta Arithmetica
Similarity:
Tingting Wang (2012)
Acta Arithmetica
Similarity:
A. Wojciechowska (1969)
Colloquium Mathematicae
Similarity:
Zhi-Wei Sun (2001)
Acta Arithmetica
Similarity:
Alfred Moessner, George Xeroudakes (1954)
Publications de l'Institut Mathématique
Similarity:
Wenpeng Zhang (2003)
Acta Arithmetica
Similarity:
Marc Perret (1991)
Acta Arithmetica
Similarity: