On the symmetric derivative
P. Kostyrko (1972)
Colloquium Mathematicae
Similarity:
P. Kostyrko (1972)
Colloquium Mathematicae
Similarity:
N. K. Kundu (1974)
Annales Polonici Mathematici
Similarity:
Mark van Hoeij (2002)
Banach Center Publications
Similarity:
Let L(y) = 0 be a linear differential equation with rational functions as coefficients. To solve L(y) = 0 it is very helpful if the problem could be reduced to solving linear differential equations of lower order. One way is to compute a factorization of L, if L is reducible. Another way is to see if an operator L of order greater than 2 is a symmetric power of a second order operator. Maple contains implementations for both of these. The next step would be to see if L is a symmetric...
Jaskuła, Janusz, Szkopińska, Bożena (2015-12-15T14:49:03Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Gang Yu (2005)
Colloquium Mathematicae
Similarity:
A positive integer n is called E-symmetric if there exists a positive integer m such that |m-n| = (ϕ(m),ϕ(n)), and n is called E-asymmetric if it is not E-symmetric. We show that there are infinitely many E-symmetric and E-asymmetric primes.
Libicka, Inga, Łazarow, Ewa, Szkopińska, Bożena (2015-12-08T09:08:27Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Jiří Matoušek (1989)
Colloquium Mathematicae
Similarity:
Dornstetter, J.L., Krob, D., Thibon, J.Y., Vassilieva, E.A. (2002)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Similarity:
Popa, Sorin (1999)
Documenta Mathematica
Similarity:
Boris Bukh (2008)
Acta Arithmetica
Similarity:
N. K. Kundu (1973)
Colloquium Mathematicae
Similarity:
Michael J. Evans (1974)
Colloquium Mathematicae
Similarity:
Kučera, Radek, Kozubek, Tomáš, Haslinger, Jaroslav
Similarity:
Mishna, Marni (2006)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
M. C. Chaki, K. K. Sharma (1976)
Colloquium Mathematicae
Similarity: