Displaying similar documents to “Class numbers of ring class fields of prime conductor”

Approximatting rings of integers in number fields

J. A. Buchmann, H. W. Lenstra (1994)

Journal de théorie des nombres de Bordeaux

Similarity:

In this paper we study the algorithmic problem of finding the ring of integers of a given algebraic number field. In practice, this problem is often considered to be well-solved, but theoretical results indicate that it is intractable for number fields that are defined by equations with very large coefficients. Such fields occur in the number field sieve algorithm for factoring integers. Applying a variant of a standard algorithm for finding rings of integers, one finds a subring of...

On rings with prime centers.

Abu-Khuzam, Hazar, Yaqub, Adil (1994)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Counting points on elliptic curves over finite fields

René Schoof (1995)

Journal de théorie des nombres de Bordeaux

Similarity:

We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large ; it is based on Shanks's baby-step-giant-step strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic...

On the class numbers of real cyclotomic fields of conductor pq

Eleni Agathocleous (2014)

Acta Arithmetica

Similarity:

The class numbers h⁺ of the real cyclotomic fields are very hard to compute. Methods based on discriminant bounds become useless as the conductor of the field grows, and methods employing Leopoldt's decomposition of the class number become hard to use when the field extension is not cyclic of prime power. This is why other methods have been developed, which approach the problem from different angles. In this paper we extend one of these methods that was designed for real cyclotomic fields...

A computer algorithm for finding new euclidean number fields

Roland Quême (1998)

Journal de théorie des nombres de Bordeaux

Similarity:

This article describes a computer algorithm which exhibits a sufficient condition for a number field to be euclidean for the norm. In the survey [3] p 405, Franz Lemmermeyer pointed out that 743 number fields where known (march 1994) to be euclidean (the first one, , discovered by Euclid, three centuries B.C.!). In the first months of 1997, we found more than 1200 new euclidean number fields of degree 4, 5 and 6 with a computer algorithm involving classical lattice properties of the...