The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Small values of the Euler function and the Riemann hypothesis”

A family of deformations of the Riemann xi-function

Masatoshi Suzuki (2013)

Acta Arithmetica

Similarity:

We introduce a family of deformations of the Riemann xi-function endowed with two continuous parameters. We show that it has rich analytic structure and that its conjectural (mild) zero-free region for some fixed parameter is a sufficient condition for the Riemann hypothesis to hold for the Riemann zeta function.

Riemann problem on the double of a multiply connected circular region

V. V. Mityushev (1997)

Annales Polonici Mathematici

Similarity:

The Riemann problem has been solved in [9] for an arbitrary closed Riemann surface in terms of the principal functionals. This paper is devoted to solution of the problem only for the double of a multiply connected region and can be treated as complementary to [9,1]. We obtain a complete solution of the Riemann problem in that particular case. The solution is given in analytic form by a Poincaré series.

Horizontal monotonicity of the modulus of the zeta function, L-functions, and related functions

Yu. Matiyasevich, F. Saidak, P. Zvengrowski (2014)

Acta Arithmetica

Similarity:

As usual, let s = σ + it. For any fixed value of t with |t| ≥ 8 and for σ < 0, we show that |ζ(s)| is strictly decreasing in σ, with the same result also holding for the related functions ξ of Riemann and η of Euler. The following inequality related to the monotonicity of all three functions is proved: ℜ (η'(s)/η(s)) < ℜ (ζ'(s)/ζ(s)) < ℜ (ξ'(s)/ξ(s)). It is also shown that extending the above monotonicity result for |ζ(s)|, |ξ(s)|, or |η(s)|...

Riemann mapping theorem in ℂⁿ

Krzysztof Jarosz (2012)

Annales Polonici Mathematici

Similarity:

The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent. We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem