Representations of integers as sums of primes from a Beatty sequence
William D. Banks, Ahmet M. Güloğlu, C. Wesley Nevans (2007)
Acta Arithmetica
Similarity:
William D. Banks, Ahmet M. Güloğlu, C. Wesley Nevans (2007)
Acta Arithmetica
Similarity:
Huaning Liu (2006)
Acta Arithmetica
Similarity:
Yong-Gao Chen, Jin-Hui Fang, Norbert Hegyvári (2016)
Acta Arithmetica
Similarity:
Xiumin Ren (2006)
Acta Arithmetica
Similarity:
Roger C. Baker, Liangyi Zhao (2016)
Acta Arithmetica
Similarity:
We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).
M. Wunderlich (1969)
Acta Arithmetica
Similarity:
Li-Xia Dai, Yong-Gao Chen (2006)
Acta Arithmetica
Similarity:
Jean Bourgain, Todd Cochrane, Jennifer Paulhus, Christopher Pinner (2011)
Acta Arithmetica
Similarity:
Antal Balog (1985)
Banach Center Publications
Similarity:
Hongze Li (2001)
Acta Arithmetica
Similarity:
Gautami Bhowmik, Jan-Christoph Schlage-Puchta (2011)
Acta Arithmetica
Similarity:
Yong-Gao Chen, Li-Xia Dai (2007)
Acta Arithmetica
Similarity:
Hong-Quan Liu (2007)
Acta Arithmetica
Similarity:
Gautami Bhowmik, Jan-Christoph Schlage-Puchta (2010)
Acta Arithmetica
Similarity:
Imre Z. Ruzsa, Tom Sanders (2008)
Acta Arithmetica
Similarity:
Todd Cochrane, Jeremy Coffelt, Christopher Pinner (2005)
Acta Arithmetica
Similarity:
Patrick Sargos (2003)
Acta Arithmetica
Similarity:
Noe, Tony D., Vos Post, Jonathan (2005)
Journal of Integer Sequences [electronic only]
Similarity: