Note on a paper by H. L. Montgomery (Omega theorems for the Riemann zeta- function).
Ramachandra, K., Sankaranarayanan, A. (1991)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Ramachandra, K., Sankaranarayanan, A. (1991)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Justas Kalpokas, Paulius Šarka (2015)
Acta Arithmetica
Similarity:
We investigate real values of the Riemann zeta function on the critical line. We show that if Gram's points do not intersect with the ordinates of the nontrivial zeros of the Riemann zeta function then the Riemann zeta function takes arbitrarily small real values on the critical line.
Maxim A. Korolev (2014)
Acta Arithmetica
Similarity:
We obtain a series of new conditional lower bounds for the modulus and the argument of the Riemann zeta function on very short segments of the critical line, based on the Riemann hypothesis. In particular, we prove that for any large fixed constant A > 1 there exist(non-effective) constants T₀(A) > 0 and c₀(A) > 0 such that the maximum of |ζ (0.5+it)| on the interval (T-h,T+h) is greater than A for any T > T₀ and h = (1/π)lnlnln{T}+c₀.
Norman Levinson (1972)
Acta Arithmetica
Similarity:
A. Laurinčikas (1990)
Acta Arithmetica
Similarity:
Yuk-Kam Lau (2002)
Acta Arithmetica
Similarity:
Shaoji Feng (2005)
Acta Arithmetica
Similarity:
Almkvist, Gert, Granville, Andrew (1999)
Experimental Mathematics
Similarity:
Aleksandar Ivić (1989)
Publications de l'Institut Mathématique
Similarity:
Aleksandar Ivić (1995)
Publications de l'Institut Mathématique
Similarity:
Daniel Bump, Eugene K.-S. Ng (1986)
Mathematische Zeitschrift
Similarity:
K. Bartz (1991)
Acta Arithmetica
Similarity:
K. Bartz (1991)
Acta Arithmetica
Similarity: