The Modular Symbol and Continued Fractions in Higher Dimensions.
Avner Ash, Lee Rudolph (1979)
Inventiones mathematicae
Similarity:
Avner Ash, Lee Rudolph (1979)
Inventiones mathematicae
Similarity:
Baruah, Nayandeep Deka, Saikia, Nipen (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Shaun Cooper (2010)
Acta Arithmetica
Similarity:
Masri, Riad, Ono, Ken (2009)
International Journal of Mathematics and Mathematical Sciences
Similarity:
B.C. Berndt, H.H. Chan, L.-C. Zhang (1996)
Journal für die reine und angewandte Mathematik
Similarity:
Koruoğlu, Özden (2010)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
K. Ramanathan (1990)
Acta Arithmetica
Similarity:
Boonrod Yuttanan (2012)
Acta Arithmetica
Similarity:
(2013)
Acta Arithmetica
Similarity:
The classical modular equations involve bivariate polynomials that can be seen to be univariate in the modular invariant j with integer coefficients. Kiepert found modular equations relating some η-quotients and the Weber functions γ₂ and γ₃. In the present work, we extend this idea to double η-quotients and characterize all the parameters leading to this kind of equation. We give some properties of these equations, explain how to compute them and give numerical examples.
Stanger, Adrian Dan (2002)
Integers
Similarity:
Takao Komatsu (2003)
Acta Arithmetica
Similarity:
D. Choi (2006)
Acta Arithmetica
Similarity:
James Mc Laughlin (2008)
Acta Arithmetica
Similarity:
Denis, Remy Y. (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Boris Adamczewski (2010)
Acta Arithmetica
Similarity:
J. Mc Laughlin, Nancy J. Wyshinski (2005)
Acta Arithmetica
Similarity: