Rank computations for the congruent number elliptic curves.
Rogers, Nicholas F. (2000)
Experimental Mathematics
Similarity:
Rogers, Nicholas F. (2000)
Experimental Mathematics
Similarity:
Enrico Jabara (2012)
Acta Arithmetica
Similarity:
Armand Brumer, Oisín McGuinness (1992)
Inventiones mathematicae
Similarity:
Dujella, Andrej, Janfada, Ali S., Salami, Sajad (2009)
Journal of Integer Sequences [electronic only]
Similarity:
Leopoldo Kulesz (2003)
Acta Arithmetica
Similarity:
Hizuru Yamagishi (1998)
Manuscripta mathematica
Similarity:
Joseph H. Silvermann (1982)
Inventiones mathematicae
Similarity:
Kumiko Nakata (1979)
Manuscripta mathematica
Similarity:
Tesuji Shioda (1991)
Inventiones mathematicae
Similarity:
Lisa Berger (2012)
Acta Arithmetica
Similarity:
Tim Dokchitser (2007)
Acta Arithmetica
Similarity:
Kulesz, Leopoldo, Stahlke, Colin (2001)
Experimental Mathematics
Similarity:
Sungkon Chang (2010)
Acta Arithmetica
Similarity:
Koh-ichi Nagao (1997)
Manuscripta mathematica
Similarity:
Farzali Izadi, Foad Khoshnam, Arman Shamsi Zargar (2016)
Colloquium Mathematicae
Similarity:
We construct a family of elliptic curves with six parameters, arising from a system of Diophantine equations, whose rank is at least five. To do so, we use the Brahmagupta formula for the area of cyclic quadrilaterals (p³,q³,r³,s³) not necessarily representing genuine geometric objects. It turns out that, as parameters of the curves, the integers p,q,r,s along with the extra integers u,v satisfy u⁶+v⁶+p⁶+q⁶ = 2(r⁶+s⁶), uv = pq, which, by previous work, has infinitely many integer solutions. ...