Displaying similar documents to “Evolution in a migrating population model”

The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs

Wei Yang, Jie Lou (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

Assuming that the population of dogs is constant and the population of human satisfies the Logistical model, an interactional model of rabies transmitted between human and dogs is formulated. Two thresholds R 0 and R 1 which determine the outcome of the disease are identified. Utilizing the method of Lyapunov function and the property of the cooperative systems, we get the global asymptotic stability for both the disease-free equilibrium and the endemic equilibrium. A critical vaccination...

Von Bertalanffy's growth dynamics with strong Allee effect

J. Leonel Rocha, Sandra M. Aleixo (2012)

Discussiones Mathematicae Probability and Statistics

Similarity:

Von Bertalanffy’s model is one of the most popular differential equation used in order to study the increase in average length or weight of fish. However, this model does not include demographic Allee effect. This phenomenon is known in the fisheries literature as “depensation”, which arises when populations decline rapidly at low densities. In this paper we develop and investigate new corrected von Bertalanffy’s models with Allee effects. The generalization that we propose results from...

A spatial individual-based contact model with age structure

Dominika Jasińska (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The Markov dynamics of an infinite continuum birth-and-death system of point particles with age is studied. Each particle is characterized by its location x d and age a x 0 . The birth and death rates of a particle are age dependent. The states of the system are described in terms of probability measures on the corresponding configuration space. The exact solution of the  evolution equation for the correlation functions of first and second orders is found.

Asymptotic sampling formulae for 𝛬 -coalescents

Julien Berestycki, Nathanaël Berestycki, Vlada Limic (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We present a robust method which translates information on the speed of coming down from infinity of a genealogical tree into sampling formulae for the underlying population. We apply these results to population dynamics where the genealogy is given by a 𝛬 -coalescent. This allows us to derive an exact formula for the asymptotic behavior of the site and allele frequency spectrum and the number of segregating sites, as the sample size tends to . Some of our results hold in the case of...

Semilinear perturbations of Hille-Yosida operators

Horst R. Thieme, Hauke Vosseler (2003)

Banach Center Publications

Similarity:

The semilinear Cauchy problem (1) u’(t) = Au(t) + G(u(t)), u ( 0 ) = x D ( A ) ¯ , with a Hille-Yosida operator A and a nonlinear operator G: D(A) → X is considered under the assumption that ||G(x) - G(y)|| ≤ ||B(x -y )|| ∀x,y ∈ D(A) with some linear B: D(A) → X, B ( λ - A ) - 1 x = λ 0 e - λ t V ( s ) x d s , where V is of suitable small strong variation on some interval [0,ε). We will prove the existence of a semiflow on [ 0 , ) × D ( A ) ¯ that provides Friedrichs solutions in L₁ for (1). If X is a Banach lattice, we replace the condition above by |G(x) - G(y)| ≤...

Mathematical Modeling Describing the Effect of Fishing and Dispersion on Hermaphrodite Population Dynamics

S. Ben Miled, A. Kebir, M. L. Hbid (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In order to study the impact of fishing on a grouper population, we propose in this paper to model the dynamics of a grouper population in a fishing territory by using structured models. For that purpose, we have integrated the natural population growth, the fishing, the competition for shelter and the dispersion. The dispersion was considered as a consequence of the competition. First we prove, that the grouper stocks may be less sensitive...

Do Demographic and Disease Structures Affect the Recurrence of Epidemics ?

A. Castellazzo, A. Mauro, C. Volpe, E. Venturino (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

In this paper we present an epidemic model affecting an age-structured population. We show by numerical simulations that this demographic structure can induce persistent oscillations in the epidemic. The model is then extended to encompass a stage-structured disease within an age-dependent population. In this case as well, persistent oscillations are observed in the infected as well as in the whole population.

The impatience mechanism as a diversity maintaining and saddle crossing strategy

Iwona Karcz-Duleba (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

The impatience mechanism diversifies the population and facilitates escaping from a local optima trap by modifying fitness values of poorly adapted individuals. In this paper, two versions of the impatience mechanism coupled with a phenotypic model of evolution are studied. A population subordinated to a basic version of the impatience mechanism polarizes itself and evolves as a dipole centered around an averaged individual. In the modified version, the impatience mechanism is supplied...

Large time behavior in a density-dependent population dynamics problem with age structure and child care

Vladas Skakauskas (2003)

Banach Center Publications

Similarity:

Two asexual density-dependent population dynamics models with age-dependence and child care are presented. One of them includes the random diffusion while in the other the population is assumed to be non-dispersing. The population consists of the young (under maternal care), juvenile, and adult classes. Death moduli of the juvenile and adult classes in both models are decomposed into the sum of two terms. The first presents death rate by the natural causes while the other describes the...

Global dynamics of a delay differential system of a two-patch SIS-model with transport-related infections

Yukihiko Nakata, Gergely Röst (2015)

Mathematica Bohemica

Similarity:

We describe the global dynamics of a disease transmission model between two regions which are connected via bidirectional or unidirectional transportation, where infection occurs during the travel as well as within the regions. We define the regional reproduction numbers and the basic reproduction number by constructing a next generation matrix. If the two regions are connected via bidirectional transportation, the basic reproduction number R 0 characterizes the existence of equilibria...

Linking population genetics to phylogenetics

Paul G. Higgs (2008)

Banach Center Publications

Similarity:

Population geneticists study the variability of gene sequences within a species, whereas phylogeneticists compare gene sequences between species and usually have only one representative sequence per species. Stochastic models in population genetics are used to determine probability distributions for gene frequencies and to predict the probability that a new mutation will become fixed in a population. Stochastic models in phylogenetics describe the substitution process in the single sequence...

Drift, draft and structure: some mathematical models of evolution

Alison M. Etheridge (2008)

Banach Center Publications

Similarity:

Understanding the evolution of individuals which live in a structured and fluctuating environment is of central importance in mathematical population genetics. Here we outline some of the mathematical challenges arising from modelling structured populations, primarily focussing on the interplay between forwards in time models for the evolution of the population and backwards in time models for the genealogical trees relating individuals in a sample from that population. In addition to...

On a functional equation with derivative and symmetrization

Adam Bobrowski, Małgorzata Kubalińska (2006)

Annales Polonici Mathematici

Similarity:

We study existence, uniqueness and form of solutions to the equation α g - β g ' + γ g e = f where α, β, γ and f are given, and g e stands for the even part of a searched-for differentiable function g. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.

Chaotic behaviour of continuous dynamical system generated by Euler equation branching and its application in macroeconomic equilibrium model

Barbora Volná (2015)

Mathematica Bohemica

Similarity:

We focus on the special type of the continuous dynamical system which is generated by Euler equation branching. Euler equation branching is a type of differential inclusion x ˙ { f ( x ) , g ( x ) } , where f , g : X n n are continuous and f ( x ) g ( x ) at every point x X . It seems this chaotic behaviour is typical for such dynamical system. In the second part we show an application in a new formulated overall macroeconomic equilibrium model. This new model is based on the fundamental macroeconomic aggregate equilibrium model called...