Displaying similar documents to “Data mining methods for prediction of air pollution”

An effective way to generate neural network structures for function approximation.

Andreas Bastian (1994)

Mathware and Soft Computing

Similarity:

One still open question in the area of research of multi-layer feedforward neural networks is concerning the number of neurons in its hidden layer(s). Especially in real life applications, this problem is often solved by heuristic methods. In this work an effective way to dynamically determine the number of hidden units in a three-layer feedforward neural network for function approximation is proposed.

Multiple neural network integration using a binary decision tree to improve the ECG signal recognition accuracy

Hoai Linh Tran, Van Nam Pham, Hoang Nam Vuong (2014)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents a new system for ECG (ElectroCardioGraphy) signal recognition using different neural classifiers and a binary decision tree to provide one more processing stage to give the final recognition result. As the base classifiers, the three classical neural models, i.e., the MLP (Multi Layer Perceptron), modified TSK (Takagi-Sugeno-Kang) and the SVM (Support Vector Machine), will be applied. The coefficients in ECG signal decomposition using Hermite basis functions and the...

Comparison of supervised learning methods for spike time coding in spiking neural networks

Andrzej Kasiński, Filip Ponulak (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this review we focus our attention on supervised learning methods for spike time coding in Spiking Neural Networks (SNNs). This study is motivated by recent experimental results regarding information coding in biological neural systems, which suggest that precise timing of individual spikes may be essential for efficient computation in the brain. We are concerned with the fundamental question: What paradigms of neural temporal coding can be implemented with the recent learning methods?...

A heuristic forecasting model for stock decision making.

D. Zhang, Q. Jiang, X. Li (2005)

Mathware and Soft Computing

Similarity:

This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. The forecasting...