Displaying similar documents to “Global existence results for second order neutral functional differential equation with state-dependent delay”

Resolvent of nonautonomous linear delay functional differential equations

Joël Blot, Mamadou I. Koné (2015)

Nonautonomous Dynamical Systems

Similarity:

The aim of this paper is to give a complete proof of the formula for the resolvent of a nonautonomous linear delay functional differential equations given in the book of Hale and Verduyn Lunel [9] under the assumption alone of the continuity of the right-hand side with respect to the time,when the notion of solution is a differentiable function at each point, which satisfies the equation at each point, and when the initial value is a continuous function.

Characterization of shadowing for linear autonomous delay differential equations

Mihály Pituk, John Ioannis Stavroulakis (2025)

Czechoslovak Mathematical Journal

Similarity:

A well-known shadowing theorem for ordinary differential equations is generalized to delay differential equations. It is shown that a linear autonomous delay differential equation is shadowable if and only if its characteristic equation has no root on the imaginary axis. The proof is based on the decomposition theory of linear delay differential equations.

Global existence and energy decay of solutions to a Bresse system with delay terms

Abbes Benaissa, Mostefa Miloudi, Mokhtar Mokhtari (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the Bresse system in bounded domain with delay terms in the internal feedbacks and prove the global existence of its solutions in Sobolev spaces by means of semigroup theory under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method.

Oscillation of delay differential equations

J. Džurina (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.