The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Formal relations between quasianalytic functions of some fixed class”

Relations among analytic functions. I

Edward Bierstone, P. D. Milman (1987)

Annales de l'institut Fourier

Similarity:

Neither real analytic sets nor the images of real or complex analytic mappings are, in general, coherent. Let Φ : X Y be a morphism of real analytic spaces, and let Ψ : 𝒢 be a homomorphism of coherent modules over the induced ring homomorphism Φ * : 𝒪 Y 𝒪 X . We conjecture that, despite the failure of coherence, certain natural discrete invariants of the modules of formal relations a = Ker Ψ ^ a , a X , are upper semi-continuous in the analytic Zariski topology of X . We prove semicontinuity in many cases (e.g. in the algebraic...

Weierstrass division theorem in quasianalytic local rings

Abdelhafed Elkhadiri, Hassan Sfouli (2008)

Studia Mathematica

Similarity:

The main result of this paper is the following: if the Weierstrass division theorem is valid in a quasianalytic differentiable system, then this system is contained in the system of analytic germs. This result has already been known for particular examples, such as the quasianalytic Denjoy-Carleman classes.

Local analytic rings

Jorge C. Zilber (1990)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Similarity:

Analytic rings

Eduardo Dubuc, Gabriel Taubin (1983)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Similarity:

On Witt rings of function fields of real analytic surfaces and curves.

Piotr Jaworski (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

Let V be a paracompact connected real analytic manifold of dimension 1 or 2, i.e. a smooth curve or surface. We consider it as a subset of some complex analytic manifold VC of the same dimension. Moreover by a prime divisor of V we shall mean the irreducible germ along V of a codimension one subvariety of VC which is an invariant of the complex conjugation. This notion is independent of the choice of the complexification VC. In the one-dimensional case prime divisors are just points,...