The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Abhyankar-Jung theorem for excellent henselian subrings of formal power series”

On ordered division rings

Ismail M. Idris (2001)

Colloquium Mathematicae

Similarity:

Prestel introduced a generalization of the notion of an ordering of a field, which is called a semiordering. Prestel's axioms for a semiordered field differ from the usual (Artin-Schreier) postulates in requiring only the closedness of the domain of positivity under x ↦ xa² for non-zero a, in place of requiring that positive elements have a positive product. Our aim in this work is to study this type of ordering in the case of a division ring. We show that it actually behaves just as...

On the ring of constants for derivations of power series rings in two variables

Leonid Makar-Limanov, Andrzej Nowicki (2001)

Colloquium Mathematicae

Similarity:

Let k[[x,y]] be the formal power series ring in two variables over a field k of characteristic zero and let d be a nonzero derivation of k[[x,y]]. We prove that if Ker(d) ≠ k then Ker(d) = Ker(δ), where δ is a jacobian derivation of k[[x,y]]. Moreover, Ker(d) is of the form k[[h]] for some h ∈ k[[x,y]].