Displaying similar documents to “Dynamical systems method for solving linear finite-rank operator equations”

Iteratively solving a kind of signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

A numerical minimization scheme for the complex Helmholtz equation

Russell B. Richins, David C. Dobson (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method...

On the two-step iterative method of solving frictional contact problems in elasticity

Todor Angelov, Asterios Liolios (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.

Solvability and numerical algorithms for a class of variational data assimilation problems

Guri Marchuk, Victor Shutyaev (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A class of variational data assimilation problems on reconstructing the initial-value functions is considered for the models governed by quasilinear evolution equations. The optimality system is reduced to the equation for the control function. The properties of the control equation are studied and the solvability theorems are proved for linear and quasilinear data assimilation problems. The iterative algorithms for solving the problem are formulated and justified.