On the coefficients of univalent polynomials
Z. Charzyński, J. Ławrynowicz (1967)
Colloquium Mathematicae
Similarity:
Z. Charzyński, J. Ławrynowicz (1967)
Colloquium Mathematicae
Similarity:
Haakon Waadeland (1980)
Annales Polonici Mathematici
Similarity:
Abstract. Let S denote the family of functions f, holomorphic and univalent in the open unit disk U, and normalized by f(0) = 0, f'(0) = 1.
Merkes, Ed, Salmassi, Mohammad (1992)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ahuja, O.P., Silverman, H. (1983)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Richard Fournier (1986)
Annales Polonici Mathematici
Similarity:
K. S. Padmanabhan, R. Bharati (1983)
Annales Polonici Mathematici
Similarity:
Romuald Zawadzki (1971)
Annales Polonici Mathematici
Similarity:
Silverman, Herb (1996)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Goodman, A.W. (1979)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Polatog̃lu, Y. (2005)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Owa, Shigeyoshi, Nunokawa, Mamoru (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity:
James L. Frank (1977)
Journal für die reine und angewandte Mathematik
Similarity:
Trimble, S.Y. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ling, Yi, Ding, Shusen (1997)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Adam Lecko (1998)
Annales Polonici Mathematici
Similarity:
We consider the class 𝓩(k;w), k ∈ [0,2], w ∈ ℂ, of plane domains Ω called k-starlike with respect to the point w. An analytic characterization of regular and univalent functions f such that f(U) is in 𝓩(k;w), where w ∈ f(U), is presented. In particular, for k = 0 we obtain the well known analytic condition for a function f to be starlike w.r.t. w, i.e. to be regular and univalent in U and have f(U) starlike w.r.t. w ∈ f(U).
M. Obradović, S. Owa (1989)
Matematički Vesnik
Similarity: