The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity”

Global existence of weak solutions to the Fried-Gurtin model of phase transitions

Zenon Kosowski (2007)

Applicationes Mathematicae

Similarity:

We prove the existence of global in time weak solutions to a three-dimensional system of equations arising in a simple version of the Fried-Gurtin model for the isothermal phase transition in solids. In this model the phase is characterized by an order parameter. The problem considered here has the form of a coupled system of three-dimensional elasticity and parabolic equations. The system is studied with the help of the Faedo-Galerkin method using energy estimates.

Stefan problem in a 2D case

Piotr Bogusław Mucha (2006)

Colloquium Mathematicae

Similarity:

The aim of this paper is to analyze the well posedness of the one-phase quasi-stationary Stefan problem with the Gibbs-Thomson correction in a two-dimensional domain which is a perturbation of the half plane. We show the existence of a unique regular solution for an arbitrary time interval, under suitable smallness assumptions on initial data. The existence is shown in the Besov-Slobodetskiĭ class with sharp regularity in the L₂-framework.

A model of evolution of temperature and density of ions in an electrolyte

Andrzej Raczyński (2005)

Applicationes Mathematicae

Similarity:

We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.

On the unique solvability of a nonlocal phase separation problem for multicomponent systems

Jens A. Griepentrog (2004)

Banach Center Publications

Similarity:

A nonlocal model of phase separation in multicomponent systems is presented. It is derived from conservation principles and minimization of free energy containing a nonlocal part due to particle interaction. In contrast to the classical Cahn-Hilliard theory with higher order terms this leads to an evolution system of second order parabolic equations for the particle densities, coupled by nonlinear and nonlocal drift terms, and state equations which involve both chemical and interaction...

Unique global solvability of 1D Fried-Gurtin model

Zenon Kosowski (2007)

Applicationes Mathematicae

Similarity:

We investigate a 1-dimensional simple version of the Fried-Gurtin 3-dimensional model of isothermal phase transitions in solids. The model uses an order parameter to study solid-solid phase transitions. The free energy density has the Landau-Ginzburg form and depends on a strain, an order parameter and its gradient. The problem considered here has the form of a coupled system of one-dimensional elasticity and a relaxation law for a scalar order parameter. Under some physically justified...

Stationary solutions of aerotaxis equations

Piotr Knosalla, Tadeusz Nadzieja (2015)

Applicationes Mathematicae

Similarity:

We study the existence and uniqueness of the steady state in a model describing the evolution of density of bacteria and oxygen dissolved in water filling a capillary. The steady state is a stationary solution of a nonlinear and nonlocal problem which depends on the energy function and contains two parameters: the total mass of the colony of bacteria and the concentration (or flux) of oxygen at the end of the capillary. The existence and uniqueness of solutions depend on relations between...

Viscosity solutions to a new phase-field model for martensitic phase transformations

Zhu, Peicheng

Similarity:

We investigate a new phase-field model which describes martensitic phase transitions, driven by material forces, in solid materials, e.g., shape memory alloys. This model is a nonlinear degenerate parabolic equation of second order, its principal part is not in divergence form in multi-dimensional case. We prove the existence of viscosity solutions to an initial-boundary value problem for this model.

Well-posedness and regularity for a parabolic-hyperbolic Penrose-Fife phase field system

Elisabetta Rocca (2005)

Applications of Mathematics

Similarity:

This work is concerned with the study of an initial boundary value problem for a non-conserved phase field system arising from the Penrose-Fife approach to the kinetics of phase transitions. The system couples a nonlinear parabolic equation for the absolute temperature with a nonlinear hyperbolic equation for the phase variable χ , which is characterized by the presence of an inertial term multiplied by a small positive coefficient μ . This feature is the main consequence of supposing...

Growth and accretion of mass in an astrophysical model, II

Piotr Biler, Tadeusz Nadzieja (1995)

Applicationes Mathematicae

Similarity:

Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.

Existence and nonexistence of solutions for a model of gravitational interaction of particles, II

Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja (1994)

Colloquium Mathematicae

Similarity:

We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.