A simple proof of two theorems concerning bases of
G. Schechtman (1978-1979)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
G. Schechtman (1978-1979)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
Ondrej F. K. Kalenda (2002)
Colloquium Mathematicae
Similarity:
We prove, among other things, that the space C[0,ω₂] has no countably norming Markushevich basis. This answers a question asked by G. Alexandrov and A. Plichko.
James R. Holub (1998)
Annales Polonici Mathematici
Similarity:
E. Tutaj has introduced classes of Schauder bases termed "unconditional-like" (UL) and "unconditional-like*" (UL*) whose intersection is the class of unconditional bases. In view of this association with unconditional bases, it is interesting to note that there exist Banach spaces which have no unconditional basis and yet have a basis of one of these two types (e.g., the space 𝓞[0,1]). In the same spirit, we show in this paper that the space of all compact operators on a reflexive Banach...
Pushkin, L. (2002)
Lobachevskii Journal of Mathematics
Similarity:
Aleksandar Krapež, M.A. Taylor (1985)
Publications de l'Institut Mathématique
Similarity:
Christian Rosendal (2011)
Studia Mathematica
Similarity:
We give an intrinsic characterisation of the separable reflexive Banach spaces that embed into separable reflexive spaces with an unconditional basis all of whose normalised block sequences with the same growth rate are equivalent. This uses methods of E. Odell and T. Schlumprecht.
Ed Dubinsky, W. Robinson (1973)
Studia Mathematica
Similarity:
CSTUG editorial board (2009)
Zpravodaj Československého sdružení uživatelů TeXu
Similarity:
CSTUG editorial board (2009)
Zpravodaj Československého sdružení uživatelů TeXu
Similarity:
W. Grabowski, W. Szwarc (1966)
Applicationes Mathematicae
Similarity:
Singer, I.
Similarity:
P.K. Jain, N.M. Kapoor (1980)
Publications de l'Institut Mathématique
Similarity: