The cardinal equation 2m=m
G. P. Monro (1974)
Colloquium Mathematicae
Similarity:
G. P. Monro (1974)
Colloquium Mathematicae
Similarity:
Arthur W. Apter (2012)
Fundamenta Mathematicae
Similarity:
We apply techniques due to Sargsyan to reduce the consistency strength of the assumptions used to establish an indestructibility theorem for supercompactness. We then show how these and additional techniques due to Sargsyan may be employed to establish an equiconsistency for a related indestructibility theorem for strongness.
Arthur W. Apter, Grigor Sargsyan (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We show how to reduce the assumptions in consistency strength used to prove several theorems on universal indestructibility.
Josef Šlapal (1993)
Czechoslovak Mathematical Journal
Similarity:
Arthur W. Apter (2015)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We construct a model for the level by level equivalence between strong compactness and supercompactness with an arbitrary large cardinal structure in which the least supercompact cardinal κ has its strong compactness indestructible under κ-directed closed forcing. This is in analogy to and generalizes the author's result in Arch. Math. Logic 46 (2007), but without the restriction that no cardinal is supercompact up to an inaccessible cardinal.
Arthur W. Apter, Shoshana Friedman (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
In an attempt to extend the property of being supercompact but not HOD-supercompact to a proper class of indestructibly supercompact cardinals, a theorem is discovered about a proper class of indestructibly supercompact cardinals which reveals a surprising incompatibility. However, it is still possible to force to get a model in which the property of being supercompact but not HOD-supercompact holds for the least supercompact cardinal κ₀, κ₀ is indestructibly supercompact, the strongly...
Arthur W. Apter (2003)
Fundamenta Mathematicae
Similarity:
We construct a model in which there is a strong cardinal κ whose strongness is indestructible under κ-strategically closed forcing and in which level by level equivalence between strong compactness and supercompactness holds non-trivially.
Kipiani, Archil (2015-10-26T11:51:40Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Arthur Apter, James Henle (1991)
Fundamenta Mathematicae
Similarity:
Julius Barbanel (1985)
Fundamenta Mathematicae
Similarity:
Arthur Apter (1984)
Fundamenta Mathematicae
Similarity:
Arthur W. Apter (2012)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We show that certain relatively consistent structural properties of the class of supercompact cardinals are also relatively consistent with the Wholeness Axioms.
A. Wojciechowska (1972)
Fundamenta Mathematicae
Similarity:
Arthur W. Apter (2012)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We construct three models containing exactly one supercompact cardinal in which level by level inequivalence between strong compactness and supercompactness holds. In the first two models, below the supercompact cardinal κ, there is a non-supercompact strongly compact cardinal. In the last model, any suitably defined ground model Easton function is realized.
Arthur W. Apter (2012)
Colloquium Mathematicae
Similarity:
We establish two new Easton theorems for the least supercompact cardinal that are consistent with the level by level equivalence between strong compactness and supercompactness. These theorems generalize Theorem 1 in our earlier paper [Math. Logic Quart. 51 (2005)]. In both our ground model and the model witnessing the conclusions of our present theorems, there are no restrictions on the structure of the class of supercompact cardinals.
Arthur W. Apter (2015)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Starting from a supercompact cardinal κ, we force and construct a model in which κ is both the least strongly compact and least supercompact cardinal and κ exhibits mixed levels of indestructibility. Specifically, κ 's strong compactness, but not its supercompactness, is indestructible under any κ -directed closed forcing which also adds a Cohen subset of κ. On the other hand, in this model, κ 's supercompactness is indestructible under any κ -directed closed forcing which does not add...
Alejandro Ramírez-Páramo (2008)
Colloquium Mathematicae
Similarity:
We establish a general technical result, which provides an algorithm to prove cardinal inequalities and relative versions of cardinal inequalities.
Arthur W. Apter (2002)
Fundamenta Mathematicae
Similarity:
If κ is either supercompact or strong and δ < κ is α strong or α supercompact for every α < κ, then it is known δ must be (fully) strong or supercompact. We show this is not necessarily the case if κ is strongly compact.
Arthur W. Apter (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We show that universal indestructibility for both strong compactness and supercompactness is consistent with the existence of two strongly compact cardinals. This is in contrast to the fact that if κ is supercompact and universal indestructibility for either strong compactness or supercompactness holds, then no cardinal λ > κ is measurable.
Arthur W. Apter (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is an unbounded set of singular cardinals which witness the only failures of GCH in the universe. In this model, the structure of the class of supercompact cardinals can be arbitrary.