Displaying similar documents to “Nonstandard Finite Difference Schemes with Application to Finance: Option Pricing”

Low Volatility Options and Numerical Diffusion of Finite Difference Schemes

Milev, Mariyan, Tagliani, Aldo (2010)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 65M06, 65M12. In this paper we explore the numerical diffusion introduced by two nonstandard finite difference schemes applied to the Black-Scholes partial differential equation for pricing discontinuous payoff and low volatility options. Discontinuities in the initial conditions require applying nonstandard non-oscillating finite difference schemes such as the exponentially fitted finite difference schemes suggested by D. Duffy and...

An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws

Michael Breuss (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We discuss the occurrence of oscillations when using central schemes of the Lax-Friedrichs type (LFt), Rusanov's method and the staggered and non-staggered second order Nessyahu-Tadmor (NT) schemes. Although these schemes are monotone or TVD, respectively, oscillations may be introduced at local data extrema. The dependence of oscillatory properties on the numerical viscosity coefficient is investigated rigorously for the LFt schemes, illuminating also the properties of Rusanov's...

Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation

Bertram Düring, Michel Fournié, Ansgar Jüngel (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides. ...

A new compact finite difference quasilinearization method for nonlinear evolution partial differential equations

P.G. Dlamini, M. Khumalo (2017)

Open Mathematics

Similarity:

This article presents a new method of solving partial differential equations. The method is an improvement of the previously reported compact finite difference quasilinearization method (CFDQLM) which is a combination of compact finite difference schemes and quasilinearization techniques. Previous applications of compact finite difference (FD) schemes when solving parabolic partial differential equations has been solely on discretizing the spatial variables and another numerical technique...