Displaying similar documents to “Steffensen Methods for Solving Generalized Equations”

New unifying convergence criteria for Newton-like methods

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence...

Local convergence theorems for Newton's method from data at one point

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We provide local convergence theorems for the convergence of Newton's method to a solution of an equation in a Banach space utilizing only information at one point. It turns out that for analytic operators the convergence radius for Newton's method is enlarged compared with earlier results. A numerical example is also provided that compares our results favorably with earlier ones.

An improved convergence analysis of Newton's method for twice Fréchet differentiable operators

Ioannis K. Argyros, Sanjay K. Khattri (2013)

Applicationes Mathematicae

Similarity:

We develop local and semilocal convergence results for Newton's method in order to solve nonlinear equations in a Banach space setting. The results compare favorably to earlier ones utilizing Lipschitz conditions on the second Fréchet derivative of the operators involved. Numerical examples where our new convergence conditions are satisfied but earlier convergence conditions are not satisfied are also reported.

Improved local convergence analysis of inexact Newton-like methods under the majorant condition

Ioannis K. Argyros, Santhosh George (2015)

Applicationes Mathematicae

Similarity:

We present a local convergence analysis of inexact Newton-like methods for solving nonlinear equations. Using more precise majorant conditions than in earlier studies, we provide: a larger radius of convergence; tighter error estimates on the distances involved; and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.

On the Halley method in Banach spaces

Ioannis K. Argyros, Hongmin Ren (2012)

Applicationes Mathematicae

Similarity:

We provide a semilocal convergence analysis for Halley's method using convex majorants in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our results reduce and improve earlier ones in special cases.

Expanding the applicability of two-point Newton-like methods under generalized conditions

Ioannis K. Argyros, Saïd Hilout (2013)

Applicationes Mathematicae

Similarity:

We use a two-point Newton-like method to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. Using more precise majorizing sequences than in earlier studies, we present a tighter semi-local and local convergence analysis and weaker convergence criteria. This way we expand the applicability of these methods. Numerical examples are provided where the old convergence criteria do not hold but the new convergence criteria...

On the convergence of Newton's method under ω*-conditioned second derivative

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

Similarity:

We provide a new semilocal result for the quadratic convergence of Newton's method under ω*-conditioned second Fréchet derivative on a Banach space. This way we can handle equations where the usual Lipschitz-type conditions are not verifiable. An application involving nonlinear integral equations and two boundary value problems is provided. It turns out that a similar result using ω-conditioned hypotheses can provide usable error estimates indicating only linear convergence for Newton's...

A weaker affine covariant Newton-Mysovskikh theorem for solving equations

Ioannis K. Argyros (2006)

Applicationes Mathematicae

Similarity:

The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical...