Displaying similar documents to “On stability of Alexander polynomials of knots and links (survey)”

A Knot Polynomial Invariant for Analysis of Topology of RNA Stems and Protein Disulfide Bonds

Wei Tian, Xue Lei, Louis H. Kauffman, Jie Liang (2017)

Molecular Based Mathematical Biology

Similarity:

Knot polynomials have been used to detect and classify knots in biomolecules. Computation of knot polynomials in DNA and protein molecules have revealed the existence of knotted structures, and provided important insight into their topological structures. However, conventional knot polynomials are not well suited to study RNA molecules, as RNA structures are determined by stem regions which are not taken into account in conventional knot polynomials. In this study, we develop a new class...

Differential equations associated with generalized Bell polynomials and their zeros

Seoung Cheon Ryoo (2016)

Open Mathematics

Similarity:

In this paper, we study differential equations arising from the generating functions of the generalized Bell polynomials.We give explicit identities for the generalized Bell polynomials. Finally, we investigate the zeros of the generalized Bell polynomials by using numerical simulations.

Extention of Apolarity and Grace Theorem

Sendov, Blagovest, Sendov, Hristo (2013)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 30C10 The classical notion of apolarity is defined for two algebraic polynomials of equal degree. The main property of two apolar polynomials p and q is the classical Grace theorem: Every circular domain containing all zeros of p contains at least one zero of q and vice versa. In this paper, the definition of apolarity is extended to polynomials of different degree and an extension of the Grace theorem is proved. This leads to simplification of the conditions of...

Growth of polynomials whose zeros are outside a circle

K. Dewan, Sunil Hans (2008)

Annales UMCS, Mathematica

Similarity:

If p(z) be a polynomial of degree n, which does not vanish in |z| < k, k < 1, then it was conjectured by Aziz [Bull. Austral. Math. Soc. 35 (1987), 245-256] that [...] In this paper, we consider the case k < r < 1 and present a generalization as well as improvement of the above inequality.

Jones polynomials, volume and essential knot surfaces: a survey

David Futer, Efstratia Kalfagianni, Jessica S. Purcell (2014)

Banach Center Publications

Similarity:

This paper is a brief overview of recent results by the authors relating colored Jones polynomials to geometric topology. The proofs of these results appear in the papers [18, 19], while this survey focuses on the main ideas and examples.