Displaying similar documents to “On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints”

Generalized Hamiltonian dynamics after Dirac and Tulczyjew

Fiorella Barone, Renato Grassini (2003)

Banach Center Publications

Similarity:

Dirac's generalized Hamiltonian dynamics is given an accurate geometric formulation as an implicit differential equation and is compared with Tulczyjew's formulation of dynamics. From the comparison it follows that Dirac's equation-unlike Tulczyjew's-fails to give a complete picture of the real laws of classical and relativistic dynamics.

Andrew Lenard: a mystery unraveled.

Praught, Jeffery, Smirnov, Roman G. (2005)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

On D’Alembert’s Principle

Larry M. Bates, James M. Nester (2011)

Communications in Mathematics

Similarity:

A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.