A new hierarchy of integrable system of dimensions: from Newton's law to generalized Hamiltonian system. II.
Huang, Xuncheng, Tu, Guizhang (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Huang, Xuncheng, Tu, Guizhang (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Muslih, S.I. (2002)
Journal of Applied Mathematics
Similarity:
Xavier Gràcia, Josep M. Pons (1996)
Extracta Mathematicae
Similarity:
Boris Khesin (1993)
Recherche Coopérative sur Programme n°25
Similarity:
Xavier Gràcia, Josep M. Pons (1994)
Annales de l'I.H.P. Physique théorique
Similarity:
Dragt, Alex J. (1997)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Similarity:
Chavchanidze, G. (2003)
Georgian Mathematical Journal
Similarity:
E. Zenhder (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Fiorella Barone, Renato Grassini (2003)
Banach Center Publications
Similarity:
Dirac's generalized Hamiltonian dynamics is given an accurate geometric formulation as an implicit differential equation and is compared with Tulczyjew's formulation of dynamics. From the comparison it follows that Dirac's equation-unlike Tulczyjew's-fails to give a complete picture of the real laws of classical and relativistic dynamics.
Popescu, Marcela, Popescu, Paul (2002)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Praught, Jeffery, Smirnov, Roman G. (2005)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Larry M. Bates, James M. Nester (2011)
Communications in Mathematics
Similarity:
A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.