Displaying similar documents to “Multisummability and ordinary meromorphic differential equations”

On meromorphic solutions of the Riccati differential equations

Ran Ran Zhang, Zong Xuan Chen (2010)

Annales Polonici Mathematici

Similarity:

We investigate the growth and Borel exceptional values of meromorphic solutions of the Riccati differential equation w' = a(z) + b(z)w + w², where a(z) and b(z) are meromorphic functions. In particular, we correct a result of E. Hille [Ordinary Differential Equations in the Complex Domain, 1976] and get a precise estimate on the growth order of the transcendental meromorphic solution w(z); and if at least one of a(z) and b(z) is non-constant, then we...

Uniqueness of meromorphic functions sharing two finite sets

Jun-Fan Chen (2017)

Open Mathematics

Similarity:

We prove uniqueness theorems of meromorphic functions, which show how two meromorphic functions are uniquely determined by their two finite shared sets. This answers a question posed by Gross. Moreover, some examples are provided to demonstrate that all the conditions are necessary.

Unicity theorems for meromorphic functions that share three values

Wei-Ran Lü, Hong-Xun Yi (2003)

Annales Polonici Mathematici

Similarity:

We deal with the problem of uniqueness of meromorphic functions sharing three values, and obtain several results which improve and extend some theorems of M. Ozawa, H. Ueda, H. X. Yi and other authors. We provide examples to show that results are sharp.

Uniqueness of meromorphic functions sharing a meromorphic function of a smaller order with their derivatives

Xiao-Min Li, Hong-Xun Yi (2010)

Annales Polonici Mathematici

Similarity:

We prove some uniqueness theorems for meromorphic functions and their derivatives that share a meromorphic function whose order is less than those of the above meromorphic functions. The results in this paper improve those given by G. G. Gundersen & L. Z. Yang, J. P. Wang, J. M. Chang & Y. Z. Zhu, and others. Some examples are provided to show that our results are the best possible.

Uniqueness of meromorphic functions sharing three values

Indrajit Lahiri, Arindam Sarkar (2005)

Annales Polonici Mathematici

Similarity:

We prove a result on the uniqueness of meromorphic functions sharing three values with weights and as a consequence of this result we improve a recent result of W. R. Lü and H. X. Yi.

On meromorphic functions for sharing two sets and three sets inm-punctured complex plane

Hong-Yan Xu, Xiu-Min Zheng, Hua Wang (2016)

Open Mathematics

Similarity:

In this article, we study the uniqueness problem of meromorphic functions in m-punctured complex plane Ω and obtain that there exist two sets S1, S2 with ♯S1 = 2 and ♯S2 = 9, such that any two admissible meromorphic functions f and g in Ω must be identical if f, g share S1, S2 I M in Ω.

Uniqueness theorems for meromorphic functions concerning fixed points

Xiu-Qing Lin, Wei-Chuan Lin (2011)

Annales Polonici Mathematici

Similarity:

This paper is devoted to the study of uniqueness of meromorphic functions sharing only one value or fixed points. We improve some related results due to J. L. Zhang [Comput. Math. Appl. 56 (2008), 3079-3087] and M. L. Fang [Comput. Math. Appl. 44 (2002), 823-831], and we supplement some results given by M. L. Fang and X. H. Hua [J. Nanjing Univ. Math. Biquart. 13 (1996), 44-48] and by C. C. Yang and X. H. Hua [Ann. Acad. Sci. Fenn. Math. 22 (1997), 395-406].

The uniqueness of meromorphic functions ink-punctured complex plane

Hong Yan Xu, San Yang Liu (2017)

Open Mathematics

Similarity:

The main purpose of this paper is to investigate the uniqueness of meromorphic functions that share two finite sets in the k-punctured complex plane. It is proved that there exist two sets S1, S2 with ♯S1 = 2 and ♯S2 = 5, such that any two admissible meromorphic functions f and g in Ω must be identical if EΩ(Sj, f) = EΩ(Sj, g)(j = 1,2).

Exceptional values of meromorphic functions and of their derivatives on annuli

Yuxian Chen, Zhaojun Wu (2012)

Annales Polonici Mathematici

Similarity:

This paper is devoted to exceptional values of meromorphic functions and of their derivatives on annuli. Some facts on exceptional values for meromorphic functions in the complex plane which were established by Singh, Gopalakrishna and Bhoosnurmath [Math. Ann. 191 (1971), 121-142, and Ann. Polon. Math. 35 (1977/78), 99-105] will be considered on annuli.

Further investigations on a question of Zhang and Lü

Abhijit Banerjee, Bikash Chakraborty (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

In the paper based on the question of Zhang and Lü [15], we present one theorem which will improve and extend results of Banerjee-Majumder [2] and a recent result of Li-Huang [9].

On a result of Zhang and Xu concerning their open problem

Sujoy Majumder, Rajib Mandal (2018)

Archivum Mathematicum

Similarity:

The motivation of this paper is to study the uniqueness of meromorphic functions sharing a nonzero polynomial with the help of the idea of normal family. The result of the paper improves and generalizes the recent result due to Zhang and Xu [24]. Our another remarkable aim is to solve an open problem as posed in the last section of [24].

On uniqueness for nonlinear differential polynomials sharing the same 1-point

Abhijit Banerjee (2006)

Annales Polonici Mathematici

Similarity:

We study the uniqueness of meromorphic functions when two nonlinear differential polynomials generated by two meromorphic functions share the same 1-points. Our results improve results of Fang-Fang and Lin-Yi and supplement a recent result of Lahiri-Pal.