Displaying similar documents to “Erratum to 'Fields of surreal numbers and exponentiation' (Fund. Math. 167 (2001), 173-188)”

Schanuel Nullstellensatz for Zilber fields

Paola D'Aquino, Angus Macintyre, Giuseppina Terzo (2010)

Fundamenta Mathematicae

Similarity:

We characterize the unsolvable exponential polynomials over the exponential fields introduced by Zilber, and deduce Picard's Little Theorem for such fields.

Fields of surreal numbers and exponentiation

Lou van den Dries, Philip Ehrlich (2001)

Fundamenta Mathematicae

Similarity:

We show that Conway's field of surreal numbers with its natural exponential function has the same elementary properties as the exponential field of real numbers. We obtain ordinal bounds on the length of products, reciprocals, exponentials and logarithms of surreal numbers in terms of the lengths of their inputs. It follows that the set of surreal numbers of length less than a given ordinal is a subfield of the field of all surreal numbers if and only if this ordinal is an ε-number....

Energy gaps for exponential Yang-Mills fields

Zhen Rong Zhou (2018)

Archivum Mathematicum

Similarity:

In this paper, some inequalities of Simons type for exponential Yang-Mills fields over compact Riemannian manifolds are established, and the energy gaps are obtained.

Real closed exponential fields

Paola D'Aquino, Julia F. Knight, Salma Kuhlmann, Karen Lange (2012)

Fundamenta Mathematicae

Similarity:

Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre’s construction and then analyze the complexity. Ressayre’s construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering...

Extending automorphisms to the rational fractions field.

Fernando Fernández Rodríguez, Agustín Llerena Achutegui (1991)

Extracta Mathematicae

Similarity:

We say that a field K has the Extension Property if every automorphism of K(X) extends to an automorphism of K. J.M. Gamboa and T. Recio [2] have introduced this concept, naive in appearance, because of its crucial role in the study of homogeneity conditions in spaces of orderings of functions fields. Gamboa [1] has studied several classes of fields with this property: Algebraic extensions of the field Q of rational numbers; euclidean, algebraically closed and pythagorean fields; fields...

Class numbers of totally real fields and applications to the Weber class number problem

John C. Miller (2014)

Acta Arithmetica

Similarity:

The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's discriminant bounds. We describe a new technique for determining the class number of such fields, allowing us to attack the class number problem for a large class of number fields not treatable by previously known methods. We give an application...