The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A strongly extreme point need not be a denting point in Orlicz spaces equipped with the Orlicz norm”

On extreme points of Orlicz spaces with Orlicz norm.

Henryk Hudzik, Marek Wisla (1993)

Collectanea Mathematica

Similarity:

In the paper we consider a class of Orlicz spaces equipped with the Orlicz norm over a non-negative, complete and sigma-finite measure space (T,Sigma,mu), which covers, among others, Orlicz spaces isomorphic to L-infinite and the interpolation space L1 + L-infinite. We give some necessary conditions for a point x from the unit sphere to be extreme. Applying this characterization, in the case of an atomless measure mu, we find a description of the set of extreme points of L1 + L-infinite...

Roughness of two norms on Musielak-Orlicz function spaces

Jimin Zheng, Lihuan Sun, Yun'an Cui (2008)

Banach Center Publications

Similarity:

In this paper, the criteria of strong roughness, roughness and pointwise roughness of Orlicz norm and Luxemburg norm on Musielak-Orlicz function spaces are obtained.

On property (β) of Rolewicz in Musielak-Orlicz sequence spaces equipped with the Orlicz norm

Paweł Kolwicz (2005)

Banach Center Publications

Similarity:

We prove that the Musielak-Orlicz sequence space with the Orlicz norm has property (β) iff it is reflexive. It is a generalization and essential extension of the respective results from [3] and [5]. Moreover, taking an arbitrary Musielak-Orlicz function instead of an N-function we develop new methods and techniques of proof and we consider a wider class of spaces than in [3] and [5].

Jung constants of Orlicz sequence spaces

Tao Zhang (2003)

Annales Polonici Mathematici

Similarity:

Estimation of the Jung constants of Orlicz sequence spaces equipped with either the Luxemburg norm or the Orlicz norm is given. The exact values of the Jung constants of a class of reflexive Orlicz sequence spaces are found by using new quantitative indices for 𝓝-functions.