Displaying similar documents to “Gravitational collapse of a Brownian gas”

On the analogy between self-gravitating Brownian particles and bacterial populations

Pierre-Henri Chavanis, Magali Ribot, Carole Rosier, Clément Sire (2004)

Banach Center Publications

Similarity:

We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Segel model of bacterial populations. In this biological context, it describes the chemotactic...

On the control of the difference between two Brownian motions: an application to energy markets modeling

Thomas Deschatre (2016)

Dependence Modeling

Similarity:

We derive a model based on the structure of dependence between a Brownian motion and its reflection according to a barrier. The structure of dependence presents two states of correlation: one of comonotonicity with a positive correlation and one of countermonotonicity with a negative correlation. This model of dependence between two Brownian motions B1 and B2 allows for the value of [...] to be higher than 1/2 when x is close to 0, which is not the case when the dependence is modeled...

Computer Simulation of Protein-Protein Association in Photosynthesis

I.B. Kovalenko, A.M. Abaturova, A.N. Diakonova, O.S. Knyazeva, D.M. Ustinin, S.S. Khruschev, G.Yu. Riznichenko, A.B. Rubin (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

The paper is devoted to the method of computer simulation of protein interactions taking part in photosynthetic electron transport reactions. Using this method we have studied kinetic characteristics of protein-protein complex formation for four pairs of proteins involved in photosynthesis at a variety of ionic strength values. Computer simulations describe non-monotonic dependences of complex formation rates on the ionic strength as the ...

A discrete contact model for crowd motion

Bertrand Maury, Juliette Venel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities ( velocities which do not violate the non-overlapping constraint). We describe...