Displaying similar documents to “Time discrete 2-sex population model”

Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency

J. Li, X. Zou (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

In this paper, with the assumptions that an infectious disease has a fixed latent period in a population and the latent individuals of the population may disperse, we reformulate an SIR model for the population living in two patches (cities, towns, or countries etc.), which is a generalization of the classic Kermack-McKendrick SIR model. The model is given by a system of delay differential equations with a fixed delay accounting for the latency and non-local terms caused by the mobility...

An age-dependent model describing the spread of panleucopenia virus within feline populations

W. E. Fitzgibbon, M. Langlais, J. J. Morgan, D. Pontier, C. Wolf (2003)

Banach Center Publications

Similarity:

Global existence results and long time behavior are provided for a mathematical model describing the propagation of Feline Panleucopenia Virus (FPLV) within a domestic cat population; two transmission modes are involved: a direct one from infective cats to susceptible ones, and an indirect one from the contaminated environment to susceptible cats. A more severe impact of the virus on young cats requires an age-structured model.

Epidemiological Models With Parametric Heterogeneity : Deterministic Theory for Closed Populations

A.S. Novozhilov (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

We present a unified mathematical approach to epidemiological models with parametric heterogeneity, i.e., to the models that describe individuals in the population as having specific parameter (trait) values that vary from one individuals to another. This is a natural framework to model, e.g., heterogeneity in susceptibility or infectivity of individuals. We review, along with the necessary theory, the results obtained using the discussed...

A non-linear discrete-time dynamical system related to epidemic SISI model

Sobirjon K. Shoyimardonov (2021)

Communications in Mathematics

Similarity:

We consider SISI epidemic model with discrete-time. The crucial point of this model is that an individual can be infected twice. This non-linear evolution operator depends on seven parameters and we assume that the population size under consideration is constant, so death rate is the same with birth rate per unit time. Reducing to quadratic stochastic operator (QSO) we study the dynamical system of the SISI model.

Viral in-host infection model with two state-dependent delays: stability of continuous solutions

Kateryna Fedoryshyna, Alexander Rezounenko (2021)

Mathematica Bohemica

Similarity:

A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous...