Von Neumann models and the oeuvre of Jerzy Łoś
Otto Moeschlin (2006)
Banach Center Publications
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Otto Moeschlin (2006)
Banach Center Publications
Similarity:
H. Woźniakowski (1971)
Applicationes Mathematicae
Similarity:
Michael Skeide (2006)
Banach Center Publications
Similarity:
The category of von Neumann correspondences from 𝓑 to 𝓒 (or von Neumann 𝓑-𝓒-modules) is dual to the category of von Neumann correspondences from 𝓒' to 𝓑' via a functor that generalizes naturally the functor that sends a von Neumann algebra to its commutant and back. We show that under this duality, called commutant, Rieffel's Eilenberg-Watts theorem (on functors between the categories of representations of two von Neumann algebras) switches into Blecher's Eilenberg-Watts theorem...
Jan Chabrowski, Jianfu Yang (2005)
Annales Polonici Mathematici
Similarity:
We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.
Ky Fan (1987)
Mathematische Zeitschrift
Similarity:
J. Chabrowski (2007)
Colloquium Mathematicae
Similarity:
We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.
Robert Pluta, Bernard Russo (2015)
Studia Mathematica
Similarity:
It is well known that every derivation of a von Neumann algebra into itself is an inner derivation and that every derivation of a von Neumann algebra into its predual is inner. It is less well known that every triple derivation (defined below) of a von Neumann algebra into itself is an inner triple derivation. We examine to what extent all triple derivations of a von Neumann algebra into its predual are inner. This rarely happens but it comes close. We prove a (triple)...
Giovanni Panti (2011)
Acta Arithmetica
Similarity:
Peng Lizhong (1987)
Mathematica Scandinavica
Similarity:
T. V. Panchapagesan (1993)
Extracta Mathematicae
Similarity:
Gelu Popescu (1991)
Mathematica Scandinavica
Similarity:
Carlo Cecchini (1998)
Banach Center Publications
Similarity:
The aim of this paper is to study markovianity for states on von Neumann algebras generated by the union of (not necessarily commutative) von Neumann subagebras which commute with each other. This study has been already begun in [2] using several a priori different notions of noncommutative markovianity. In this paper we assume to deal with the particular case of states which define odd stochastic couplings (as developed in [3]) for all couples of von Neumann algebras involved. In this...
Barthélemy Le Gac, Ferenc Móricz (2004)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Let H be a separable complex Hilbert space, 𝓐 a von Neumann algebra in 𝓛(H), ϕ a faithful, normal state on 𝓐, and 𝓑 a commutative von Neumann subalgebra of 𝓐. Given a sequence (Xₙ: n ≥ 1) of operators in 𝓑, we examine the relations between bundle convergence in 𝓑 and bundle convergence in 𝓐.
François Castella (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
Similarity:
We present the semi-conductor Boltzmann equation, which is time-reversible, and indicate that it can be formally derived by considering the large time and small perturbing potential limit in the Von-Neumann equation (time-reversible). We then rigorously compute the corresponding asymptotics in the case of the Von-Neumann equation on the Torus. We show that the limiting equation we obtain does not coincide with the physically realistic model. The former is indeed an equation of Boltzmann...
M. Gromov, M.A. Shubin (1991)
Geometric and functional analysis
Similarity:
M. Gromov, M. Shubin (1995)
Geometric and functional analysis
Similarity: