The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The strong unicity constant and its applications”

Constants of strong uniqueness of minimal norm-one projections

A. Micek (2011)

Banach Center Publications

Similarity:

In this paper we calculate the constants of strong uniqueness of minimal norm-one projections on subspaces of codimension k in the space l ( n ) . This generalizes a main result of W. Odyniec and M. P. Prophet [J. Approx. Theory 145 (2007), 111-121]. We applied in our proof Kolmogorov’s type theorem (see A. Wójcik [Approximation and Function Spaces (Gdańsk, 1979), PWN, Warszawa / North-Holland, Amsterdam, 1981, 854-866]) for strongly unique best approximation.

Minimal Niven numbers

H. Fredricksen, E. J. Ionascu, F. Luca, P. Stănică (2008)

Acta Arithmetica

Similarity:

Two commuting maps without common minimal points

Tomasz Downarowicz (2011)

Colloquium Mathematicae

Similarity:

We construct an example of two commuting homeomorphisms S, T of a compact metric space X such that the union of all minimal sets for S is disjoint from the union of all minimal sets for T. In other words, there are no common minimal points. This answers negatively a question posed in [C-L]. We remark that Furstenberg proved the existence of "doubly recurrent" points (see [F]). Not only are these points recurrent under both S and T, but they recur along the same sequence of powers. Our...

C 1 -minimal subsets of the circle

Dusa McDuff (1981)

Annales de l'institut Fourier

Similarity:

Necessary conditions are found for a Cantor subset of the circle to be minimal for some C 1 -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.

Uniqueness of minimal projections onto two-dimensional subspaces

Boris Shekhtman, Lesław Skrzypek (2005)

Studia Mathematica

Similarity:

We prove that minimal projections from L p (1 < p < ∞) onto any two-dimensional subspace are unique. This result complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]). We also investigate the minimal number of norming points for such projections.