Erratum to "Fields of surreal numbers and exponentiation" (Fund. Math. 167 (2001), 173-188)
Lou van den Dries, Philip Ehrlich (2001)
Fundamenta Mathematicae
Similarity:
Lou van den Dries, Philip Ehrlich (2001)
Fundamenta Mathematicae
Similarity:
Helmut Wolter (1984)
Mémoires de la Société Mathématique de France
Similarity:
Paola D'Aquino, Julia F. Knight, Salma Kuhlmann, Karen Lange (2012)
Fundamenta Mathematicae
Similarity:
Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre’s construction and then analyze the complexity. Ressayre’s construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering...
M. Stojaković (1972)
Publications de l'Institut Mathématique
Similarity:
Irving Stringham (1893)
Bulletin of the New York Mathematical Society
Similarity:
W. Więsław (1972)
Colloquium Mathematicae
Similarity:
Garyfalos Papaschinopoulos, John Schinas (1985)
Czechoslovak Mathematical Journal
Similarity:
Carlos Currás Bosch (1979)
Collectanea Mathematica
Similarity:
Paola D'Aquino, Angus Macintyre, Giuseppina Terzo (2010)
Fundamenta Mathematicae
Similarity:
We characterize the unsolvable exponential polynomials over the exponential fields introduced by Zilber, and deduce Picard's Little Theorem for such fields.
Yong-Gao Chen, Jin-Hui Fang, Norbert Hegyvári (2016)
Acta Arithmetica
Similarity:
Bachman, Gennady (1999)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
E. Bombieri (1978)
Inventiones mathematicae
Similarity: