Displaying similar documents to “Embedded surfaces in the 3-torus”

On surface braids of index four with at most two crossings

Teruo Nagase, Akiko Shima (2005)

Fundamenta Mathematicae

Similarity:

Let Γ be a 4-chart with at most two crossings. We show that if the closure of the surface braid obtained from Γ is one 2-sphere, then the sphere is a ribbon surface.

Surfaces with prescribed Weingarten operator

Udo Simon, Konrad Voss, Luc Vrancken, Martin Wiehe (2002)

Banach Center Publications

Similarity:

We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten operator in case that one surface is given as surface of revolution. Our local and global results complement global results on ovaloids of revolution from S-V-W-W.

Timelike Christoffel pairs in the split-quaternions

M. P. Dussan, M. Magid (2010)

Annales Polonici Mathematici

Similarity:

We characterize the Christoffel pairs of timelike isothermic surfaces in the four-dimensional split-quaternions. When restricting the receiving space to the three-dimensional imaginary split-quaternions, we establish an equivalent condition for a timelike surface in ℝ³₂ to be real or complex isothermic in terms of the existence of integrating factors.

Lorentzian isothermic surfaces and Bonnet pairs

M. A. Magid (2004)

Annales Polonici Mathematici

Similarity:

Lorentzian surfaces in Lorentz three-space are studied using an indefinite version of the quaternions. A classification theorem for Bonnet pairs in Lorentz three-space is obtained.

Lifting di-analytic involutions of compact Klein surfaces to extended-Schottky uniformizations

Rubén A. Hidalgo (2011)

Fundamenta Mathematicae

Similarity:

Let S be a compact Klein surface together with a di-analytic involution κ: S → S. The lowest uniformizations of S are those whose deck group is an extended-Schottky group, that is, an extended Kleinian group whose orientation preserving half is a Schottky group. If S is a bordered compact Klein surface, then it is well known that κ can be lifted with respect to a suitable extended-Schottky uniformization of S. In this paper, we complete the above lifting property by proving that if S...

Surfaces in 3-space that do not lift to embeddings in 4-space

J. Carter, Masahico Saito (1998)

Banach Center Publications

Similarity:

A necessary and sufficient condition for an immersed surface in 3-space to be lifted to an embedding in 4-space is given in terms of colorings of the preimage of the double point set. Giller's example and two new examples of non-liftable generic surfaces in 3-space are presented. One of these examples has branch points. The other is based on a construction similar to the construction of Giller's example in which the orientation double cover of a surface with odd Euler characteristic...

Looseness and Independence Number of Triangulations on Closed Surfaces

Atsuhiro Nakamoto, Seiya Negami, Kyoji Ohba, Yusuke Suzuki (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The looseness of a triangulation G on a closed surface F2, denoted by ξ (G), is defined as the minimum number k such that for any surjection c : V (G) → {1, 2, . . . , k + 3}, there is a face uvw of G with c(u), c(v) and c(w) all distinct. We shall bound ξ (G) for triangulations G on closed surfaces by the independence number of G denoted by α(G). In particular, for a triangulation G on the sphere, we have [...] and this bound is sharp. For a triangulation G on a non-spherical surface...

Pruning theory and Thurston's classification of surface homeomorphisms

André de Carvalho, Toby Hall (2001)

Journal of the European Mathematical Society

Similarity:

Two dynamical deformation theories are presented – one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading – both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to Thurston’s classification of surface homeomorphisms up to isotopy.