Displaying similar documents to “On the Hausdorff dimension of piecewise hyperbolic attractors”

Normal points for generic hyperbolic maps

Mark Pollicott (2009)

Fundamenta Mathematicae

Similarity:

We consider families of hyperbolic maps and describe conditions for a fixed reference point to have its orbit evenly distributed for maps corresponding to generic parameter values.

Inhomogeneities in non-hyperbolic one-dimensional invariant sets

Brian E. Raines (2004)

Fundamenta Mathematicae

Similarity:

The topology of one-dimensional invariant sets (attractors) is of great interest. R. F. Williams [20] demonstrated that hyperbolic one-dimensional non-wandering sets can be represented as inverse limits of graphs with bonding maps that satisfy certain strong dynamical properties. These spaces have "homogeneous neighborhoods" in the sense that small open sets are homeomorphic to the product of a Cantor set and an arc. In this paper we examine inverse limits of graphs with more complicated...

Boundaries of right-angled hyperbolic buildings

Jan Dymara, Damian Osajda (2007)

Fundamenta Mathematicae

Similarity:

We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.

On the Hyperbolic Hausdorff Dimension of the Boundary of a Basin of Attraction for a Holomorphic Map and of Quasirepellers

Feliks Przytycki (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

e prove that the hyperbolic Hausdorff dimension of Fr Ω, the boundary of the simply connected immediate basin of attraction Ω to an attracting periodic point of a rational mapping of the Riemann sphere, which is not a finite Blaschke product in some holomorphic coordinates, or a 2:1 factor of a Blaschke product, is larger than 1. We prove a "local version" of this theorem, for a boundary repelling to the side of the domain. The results extend an analogous fact for...

Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles

Jacob Palis, Jean-Christophe Yoccoz (2009)

Publications Mathématiques de l'IHÉS

Similarity:

In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C ∞, parametrized families {g t ∣t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative...